Black Sea Aquaculture: Legacy, Challenges & Future Opportunities

Black Sea Aquaculture: Legacy, Challenges & Future Opportunities

Responsible aquaculture, the farming of aquatic organisms, is a sustainable strategic sector for land and coastal communities. It significantly contributes to food security and enhancement of economic development; it provides employment opportunities and often contributes to the ecological services provided by the environment. According to the Food and Agriculture Organization of the United Nations, the contribution of aquaculture to the global food security is widely demonstrated by an astounding industry growth of 7.5% per year since 1970. In 2018, aquaculture reached the all-time highest production of 114.5 million tonnes in live weight with a total farm gate sale value of USD 263.6 billion. This makes aquaculture a key player within the Blue Growth concept and a strong contributor to some of its key Sustainable Development Goals. This is particularly true in geographical areas where dependence of local economies on fishery products is high, and yet access to sustainable landings is hampered by ecological barriers. One such area is represented by the Black Sea basin. Whilst the Black Sea annual capture fishery production has varied considerably since 1990 and its current landings are significant, growing attention is currently given to boost aquaculture development along the Black Sea bordering countries, with marine aquaculture being considered as an important contributor to the total fisheries production. Nonetheless, aquaculture development in this region is not homogenous and its development has, so far, been limited by environmental, economic, social, and more generally governance issues. This paper, for the first time, attempts to provide a comprehensive fresh outlook of the aquaculture sector in the Black Sea, stressing the importance of regional cooperation as an essential pillar to support the sustainable development of the industry. The paper addresses aquaculture in the Black Sea from different perspectives: it outlines the key characteristics of the Black Sea environment; it discusses the most common farmed aquatic species and the potential for new ones; it frames the national approaches to aquaculture development, sharing information about success stories, while shedding light on the main challenges and priorities ahead. This collective endeavour will represent a helpful contribution to Black Sea riparian countries to answer the many questions they have, and expectations they hold from the aquaculture sector.

___

  • Abyar, H.; Younesi, H.; Bahramifar, N.; Zinatizadeh, A.A. (2018). Biological CNP removal from meat-processing wastewater in an innovative high rate up-flow A2O bioreactor. Chemosphere, 213, 197–204.
  • Adamenko, T. (2014). Agroclimatic zoning of the territory of Ukraine taking into account climate change. Kyiv. Adamenko, T. (2019). Climate change and rural economy in Ukraine: what should farmers know? s.l.: GermanUkrainian agro-political dialogue. Adler, P.R.; Harper, J.K.; Takeda, F.; Wade, E.M.; Summerfelt, S.T. (2000). Economic evaluation of hydroponics and other treatment options for phosphorus removal in aquaculture effluent. HortScience, 35, 993–999.
  • Aguado-Giménez, F., Carballeira Ocaña, A., Collado Sánchez, C. (2012). Propuesta metodológica para la realización de los planes de vigilancia ambiental de los cultivos marinos en jaulas flotantes. Junta Nacional Asesora de Cultivos Marinos (JACU-MAR). Ministerio de Agricultura, Alimentación y Medio Ambiente, Spain, 164 p.
  • Aguilar-Manjarrez, J., Soto, D. & Brummett, R. (2017). Aquaculture zoning, site selection and area management under the ecosystem approach to aquaculture. A handbook. Report ACS18071. Rome, FAO, and World Bank Group, Washington, DC. 62 pp. Includes a USB card containing the full document (395 pp.).
  • Ak, K., Kurtoğlu, İ., Serezlı, R., Kayış, Ş., Yandı, İ. (2019). ̇ Introduce the Siberian Sturgeon (Acipenser baerii) to Turkish aquaculture industry: Duoculture possibility with Rainbow Trout. Ege Journal of Fisheries and Aquatic Sciences, 36 (3), 211-217.
  • https://doi.org/10.12714/egejfas.2019.36.3.02. Ak, O., Ceylan, B., Aydın, İ., Polat, H., Küçük, E., Eroğlu, O., & Kapiris, K. (2016). Stock enhancement by hatcheryreleased turbot, Psetta maxima, in the southeastern Black Sea: capture, migration, growth and diet analyses. Scientia Marina, 80(2), 163-174.
  • Akbulut, B. (1998). Research on Cultivation Systems Applicable in Bringing Rainbow Trout to Fillet Weight Under Eastern Black Sea Conditions. Doctoral Thesis. Fisheries Technology Engineering, Institute of Science, Karadeniz Technical University.
  • Akbulut, B. & Şahin, T. (1999). Effect of weight loss occurring in winter season on growth of seabass (Dicentrarchus labrax) reared in the Black Sea, Turkish Journal of Marine Sciences, 5, 39-46.
  • Akbulut B., Kurtoğlu İ.Z., Üstündağ E., Aksungur M. (2009a). Historical development and future projection of aquaculture in the Black Sea region. Journal of Fisheries Sciences, 3 (2), 76-85.
  • Akbulut, B., Zengin, M., Dağtekin, M., Özkan, B., Eroglu, O., Çiftci, Y., Firidin, Ş., Cakmak, E., Çavdar, Y., Aksungur, N., Aydın, İ., Ustaoglu Tiril, S., Memis, D., Alkan, A.,
  • Üstündag, E. ve Serdar, S. (2009b). Present Status of Sturgeon Population and Rearing Possibilities in Turkish Black Sea Coastline and Rivers. The 6th International Symposium on Sturgeon Wuhan, Hubei Province, China. Akbulut, B., Zengin, M., Çiftçi, Y., Ustaoğlu Tiril, S., Memiş, D.,
  • Alkan, A., & Eroğlu, O. (2011). Stimulating sturgeon conservation and rehabilitation measures in Turkey: an overview on major projects (2006–2009). Journal of Applied Ichthyology, 27(2), 415-419.
  • Akbulut, B. & Aydın, İ. (2012). Future predictions and current status of Sturgeon. Symposium of Freshwater Fisheries, Ondokuzmayıs. November 9, 2012 Ondokuzmayıs Samsun (In Turkish).
  • Akbulut, B., Feledi, T., Lengyel, S., & Ronyai, A. (2013). Effect of feeding rate on growth performance, food utilization and meat yield of sterlet (Acipenser ruthenus Linné, 1758). Journal of Fisheries Sciences, 7(3), 216.
  • Alkan, A., Akbulut, B., Başçinar, S., Zengin, B., Serdar, S. (2006). Determination of the effects of aquaculture establishments on marine ecosystem. Aquaculture Studies (Old Dolphin Research Bulletin) (1).
  • Altmann, J., Rehfeld, D., Träder, K., Sperlich, A., Jekel, M. (2016). Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Research, 92, 131–139.
  • Alpbaz, A.G. (1990). Sea Fish Aquaculture. Aegean University Fisheries College No:20, Izmir, 335 pp. (in Turkish). Andreoni, F. and Magnani, M. (2014). Photobacteriosis: Prevention and Diagnosis. Hindawi Publishing Corporation Journal of Immunology Research, 793817, 7. https://doi.org/10.1155/2014/793817
  • Ansari, F.A., Singh, P., Guldhe, A., Bux, F. (2017). Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Research, 21, 169–177.
  • Attramadal, K.J.K., Salvesen, I., Xue, R., Øie, G., Størseth, T.R. Vadstein, O., Olsen, Y. (2012). Recirculation as a possible microbial control strategy in the production of marine larvae. Aquaculture Engineering, 46, 27-39.
  • Austin, B. & Austin, D.A. (1999). Bacterial Fish Pathogens. Diseases of Farmed and Wild Fish. Springer-Praxis Publishing, Ltd., United Kingdom.
  • Aydın, İ., Küçük, E., Şahin, T., Kolotoğlu, L. (2011a). The effect of feeding frequency and feeding rate on growth performance of juvenile Black Sea Turbot (Psetta maxima, Linneaus, 1758). Journal of Fisheries Scienes, 5(1), 35-42. https://doi.org/10.3153/jfscom.2011004
  • Aydın, İ., & Şahin, T. 2011b. Reproductive performance of turbot (Psetta maxima) in the south-eastern Black Sea. Turkish Journal of Zoology, 35(1), 109-113. Aydın, İ., Polat, H., & Şahin, T. (2020). Reproductive Performance of Wild and Hatchery-Reared Black Sea Turbot, Psetta maxima, in the Southern Black Sea Coast. Turkish Journal of Fisheries and Aquatic Sciences, 20, 351-357. https://doi.org/10.4194/1303-2712-v20_5_03
  • Barazi-Yeroulanos, L. (2010). Synthesis of Mediterranean marine finfish aquaculture – a marketing and promotion strategy. Studies and Reviews. General Fisheries Commission for the Mediterranean. No. 88 Rome, FAO. 198p.
  • Bakan, G. and Büyükgüngör, H. (2000). The Black Sea. Marine Pollution Bulletin, 41.1-6, 24-43. https://doi.org/10.1016/S0025-326X (00)00100-4
  • Baltadakis, A., Casserly, J., Falconer, L., Sprague, M., Telfer, T.C. (2020). European lobsters utilise Atlantic salmon wastes in coastal integrated multi-trophic aquaculture systems. Aquacult Environ Interact, 12, 485-494. https://doi.org/10.3354/aei00378
  • Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F., eds. (2018). Impacts of climate change on fisheries and aquaculture: synthesisof current knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture Technical Paper No. 627. Rome, FAO. 628 pp.
  • Barbukho, O. (2016). Ecological-Toxicological Assessment of the Desna River and Adjacent Floodplain Lakes (within the Chernigiv Region, Ukraine) in Terms of Pesticides Content in Fish Liver. Hydrobiological Journal, 52(2), 109- 120.
  • Bascinar, N.S., Gozler, A.M., Şahin, C., Eruz, C., Tolun L., Agirbas E., Verep, B. (2014). The impact assessment of cage aquaculture on benthic communities along the southeastern Black Sea. Iranian Journal of Fisheries Sciences, 13(3), 719-738.
  • Beken, A.T., Polat, H., Aydın, İ. (2014). Cryopreservation of Turbot (Psetta maxima) Sperm with Different Cooling Protocols, September 25-27, 2014, International Symposium on Fisheries and Aquatic Sciences (FABA 2014), Trabzon, Turkey.
  • Bersan, T. & Sytnik, Y. (2013). Biodiversity and the role of animals in ecosystems: Proceedings of the VII International Scientific Conference. Dnepropetrovsk, Adverta, pp. 78-81.
  • Black Sea Commission. (2008). State of the Environment of the Black Sea (2001 - 2006/7).
  • Black Sea Commission. (2019). Commission on the Protection of the Black Sea Against Pollution. The Black Sea. Retrieved July 2020 from http://www.blackseacommission.org/The%20Black%20Sea/Geography/
  • Black Sea CONNECT. (2020). Retrieved Oct 2, 2020 from http://connect2blacksea.org/
  • Bondar, O., Ryzhenko, N., Fedorenko, Y. & Strilets, R. (2020). Dangerous properties of polychlorinated biphenyls and environmentally sound management of PCB in Ukraine. Regulatory Mechanisms in Biosystems, 11(1), 37-44.
  • Braga, A.C., Camacho, C., Marques, A., Martínez, A.G., Pacheco, M., Costa, P.R. (2018). Combined effects of warming and acidification on accumulation and elimination dynamics of paralytic shellfish toxins in mussels Mytilus galloprovincialis. Environmental Research, 164, 647-654.
  • Brander, K.M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences of the United States, 104 (50), 19709–19714. Montenegrina, 14, 14–20. https://doi.org/10.1073/pnas.0702059104
  • Brass, G.W., Ed. (2002). The Arctic Ocean and Climate Change: A Scenario for The Us Navy. Arctic Ocean Climate Change, US Arctic Research Commission Special Publication No. 02-1, Arlington, VA, 14p.
  • BSGM. (2020). Statistics of Turkish Fisheries, Ministry of Agriculture in Turkish. Retrieved Nov 8, 2020 from https://www.tarimorman.gov.tr/sgb/Belgeler /SagMenuVeriler/BSGM.pdf.
  • Buhlak, Y., Guillotreau, P., Vallee, T., le Bihan, V., & J.A. Theodorou, J.A. (2021). Multidimensional aquaculture investor index: Black Sea riparian countries. Journal of Applied Aquaculture. https://doi.org/10.1080/10454438.2021.1887040
  • Cadar, E. and Cherim, M. (2018). Studies on the physicochemical characteristics of the marine algae ecosystem from the Romanian Black Sea. Journal of Science and Arts, 3(44), 717-726.
  • Cadar, E., Axinte, E.R. Amzoiu, M., Jurja, S., Cherim, M. (2019). Preliminary study on the marine algae from the Romanian Black Sea Coast. Journal of Science and Arts, 4(49), 989-1000.
  • Caddy, J.F. (1993). Contrast between recent fishery trends and evidence for nutrient enrichment in two large marine ecosystems: The Mediterranean and Black Seas. In: Sherman, K., Alexander, L.M., Gold, B.D. (Eds.), Large Marine Ecosystems: Stress, Mitigation, and Sustainability. AAAS Press, Washington, D.C, pp. 137– 147.
  • Çakmak, E., Kurtoğlu, İ.Z., Okumuş, İ., Çavdar, Y., Aksungur, N., Firidin, Ş., Başçınar, N., Aksungur, M., Zengin, B., Ak, O., Esenbuğa, H. (2007). Culture of Black Sea Trout (Salmo trutta labrax Pallas, 1811) and it’s use for restocking purposes, Central Fisheries Research Institute (SUMAE) Project Report (TAGEM/HAYSÜD/2001/07/01/20), 224s. (In Turkish)
  • Çakmak, E., Çankırılıgil, E.C., & Özel, O.T. (2018). The Fifth Culture Generation of Black Sea Trout (Salmo trutta labrax): Culture Characteristics, Meat Yield and Proximate Composition. Ege Journal of Fisheries and Aquatic Sciences, 35(1), 103-110. https://doi.org/10.12714/egejfas.2018.35.1.16
  • Can, E, Kayim M., Kizak, V., Güner, Y. (2010). Sustainable aquaculture with environmental approaches. World Universities Congress, Conference paper, Çanakkale Turkey, P, 7.
  • Can, E. Kurtoglu, I.Z. Benzer, F., Erisir M., Kocabas¸ M., Kizak, V., Kayım, M., Çelik, H.T. (2012). The effects of different dosage of kefir with different durations on growth performances and antioxidant system in the blood and liver tissues of Çoruh trout (Salmo coruhensis), Turkish Journal of Fisheries and Aquatic Sciences, 12.
  • Căpriţă, F.C. and Ene, A. (2020). Biosorption of heavy metals from the metallurgical industry wastewater by macroalgae. AIP Conference Proceedings 2218, 030011 (2020); Published Online: 20 March 2020. https://doi.org/10.1063/5.0001087
  • Carras, M.A., Knowler, D., Pearce, C.M., Hamer, A., Chopin, T., Weaire, T. (2019). A discounted cash-flow analysis of salmon monoculture and Integrated Multi-Trophic Aquaculture in eastern Canada. Aquaculture Economics and Management, 43-63. https://doi.org/10.1080/13657305.2019.1641572
  • Caruso, F. (2018). Identification of the potentialities integrated multi-trophic aquaculture (IMTA) in the Mediterranean and Black Sea. MSc Thesis, Universidad de Las Palmas de Gran Canaria.
  • Chary, K., Aubin, J., Sadoul, B., Fiandrino, A., Covès, D., Callier, M.D. (2020). Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): assessing bioremediation and lifecycle impacts. Aquaculture, 516, 734621. https://doi.org/10.1016/J.AQUACULTURE.2019.734621
  • Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R. And Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10 (3), 235–251. https://doi.org/10.1111/j.1467-2979.2008.00315.x
  • Chia, E., Rey-Valette, H., Lazard, J., Clément, O., & Mathe, S. (2009). Évaluer la durabilité des systèmes et des territoires aquacoles : proposition méthodologique. Cahiers Agricultures, 18(2-3), 211-219. https://doi.org/10.1684/agr.2009.0298
  • Chopin, T., Cooper, J.A., Reid, G., Cross, S., Moore, C. (2012). Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4, 209–220. https://doi. org/10.1111/j.1753-5131.2012.01074. x
  • Çiftci, Y., Eroğlu, O., & Firidin, Ş. (2013). Mitochondrial cytochrome b sequence variation in three Sturgeon species (A. stellatus Pallas, 1771, A. gueldenstaedtii Brandt, 1833, H. huso Linnaeus, 1758) from the Black Sea Coasts of Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 13(2), 291-303.
  • Çoban, D., Demircan, M.D. & Tosun, D.D. (Eds.) (2020). Marine Aquaculture in Turkey: Advancements and Management. Turkish Marine Research Foundation (TUDAV). Publication No: 59, İstanbul, Turkey.
  • Cristea, V., Suciu, R., Ionescu, T. et al. (2016). Final Scientific Report of the Pilot Project no. 18 /22.04.2013 “Assessing the survival and dispersion in the Black Sea of critically endangered sturgeon juveniles released in the Romanian Lower Danube 2013 - 2015”, funded through the European Fisheries Fund/ Operational Programme for Fisheries Management Authority, https://www.ddni.ro/sturgeons/images/Files/rapstprpil ot2013.pdf
  • Daskalov, G.M., Grishin, A., Rodionov, S., Mihneva, V. (2007). Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences, 104, 10518-10523. Devine, D. (2005). Carlsbad hatchery group proposes offshore aquaculture on oil platform. Retrieved June 16, 2021 from https://www.sandiegouniontribune.com/sdutcarlsbad-hatchery-group-proposes-offshore-2005jun19- story.html
  • Dimoftache, G. (1986). Experimental Culture Techniques Rearing the Common Shrimp Palaemon adspersus Rathke, 1836. Mariculture Issues, IRCM Constanţa, Romania: 77-86.
  • Dobrjanska, A., Melnik, A., Syariy, B. & Korilyak, M. (2014). A comparative description of the ecological state of nursery ponds of the Lviv fish farm. Rybohospodarska Nauka Ukrainy, 2, 14-21.
  • Dorucu, M. and Mutlu, N. (2008). Parasitic Fish Disease and Their Treatment. e-Journal of New World Sciences Academy, 3 (2).
  • EAFA (2020). Annual report of Bulgaria on the efforts in achieving a sustainable balance between fisheries and fishing opportunities. pp. 37.
  • EC. (2018). High Level Conference on Black Sea Fisheries and Aquaculture. Sofia Ministerial Declaration. 7 June 2018. Sofia.
  • ECOAST. (2020). European MSP Platform. Retrieved Oct 3, 2020 from https://www.msp-platform.eu/projects/ecoast-newmethodologies-ecosystem-approach-spatial-andtemporal-management-fisheries
  • Edwards, D. & Doroshov, S. (1989). Sturgeon and Seatrout Fisheries Development, FAO, Turkey Technical Cooperations Programme.
  • Edwards, M., Johns, D.G., Leterme, S.C., Svendsen, E., Richardson, A.J. (2006). Regional climate change and harmful algal blooms in the northeast Atlantic. Limnology and Oceanography, 51 (2), 820–829. https://doi.org/10.4319/lo.2006.51.2.0820
  • Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14.Ehler, C. & Douvere, F. (2009). Marine spatial planning: a stepby-step approach toward ecosystem-based management. Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris, UNESCO. Retrieved from http://unesdoc.unesco.org/images/0018/001865/1865 59e.pdf
  • Elliott, J.M. (1994). Quantitative ecology and the brown trout. Oxford Univ. Press, Oxford, 286p. Erdogan, N., Duzgunes, E., Ogut, H. (2009). Black Sea fisheries and climate change. In CIEMS Workshop Monographs – June 2009. Retrieved from https://www.researchgate.net/publication/261709237
  • _Black_Sea_fisheries_and_climate_change Espinal, C.A and Matulić, D. (2019). Recirculating Aquaculture Technologies. pp 35-76 In: Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future, 619.
  • EEA (European Environment Agency). (2015). The European Environment: State and Outlook 2015: Black Sea Region Briefing. Publications Office of the European Commission.
  • EU Directive 2014/89/EU. (2020). EUR-Lex, Access to European Union law. Retrieved Oct 3, 2020 from http://data.europa.eu/eli/dir/2014/89/oj
  • EU. (2019). European Union- Stakeholder Seminar on Blue Economy Towards a Common Maritime Agenda for the Black Sea. Istanbul, Turkey, March 2019.
  • European Commission. (2020). The EU Blue Economy Report. 2020. Publications Office of the European Union. Luxembourg.
  • European Regional Downscaling Experiment. (2020). EUROCORDEX. Retrieved Oct 15, 2020 from https://www.euro-cordex.net/ FAO. (2005-2021). National Aquaculture Sector Overview. Russian Federation. National Aquaculture Sector Overview Fact Sheets. Text by Bogeruk, A. In: FAO Fisheries Division [online]. Rome. Updated. Retrieved April 8, 2021.
  • FAO. (2012-2021). National Aquaculture Legislation Overview. Turkey. National Aquaculture Legislation Overview Fact Sheets. Text by DOffay, B. In: FAO Fisheries Division [online]. Rome. Updated. Retrieved May 26, 2021.
  • FAO. (2013). Applying spatial planning for promoting future aquaculture growth. Seventh Session of the SubCommittee on Aquaculture of the FAO Committee on Fisheries. St Petersburg, Russian Federation, 7–11 October 2013.
  • FAO. (2014). Committee on Fisheries. 2014. Report of the seventh session of the Sub-Committee on Aquaculture. St Petersburg, Russian Federation, 7–11 October 2013. FAO Fisheries and Aquaculture Report. No. 1064. Rome, FAO. 53 pp
  • FAO. (2015). Fishery and Aquaculture Country Profile: Georgia. Fisheries and Aquaculture Department. Retrieved April 2, 2021 from http://www.fao.org/fishery/facp/GEO/en/ FAO. (2016). Report of the first session of the COFI Advisory Working Group on Aquatic Genetic Resources and Technologies, Brasilia, Brazil, 1–2 October 2015. FAO Fisheries and Aquaculture Report No. R1139. Rome, Italy.
  • FAO. (2017). GFCM High-level conference towards enhanced cooperation on Black Sea fisheries and aquaculture: Adeclaration to boost regional cooperation in the sector, 24–25 October 2016, Bucharest, Romania. FAO Fisheries and Aquaculture Proceedings No. 52. Rome, Italy.
  • FAO. (2018a). The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals. Food and Agriculture Organization of the United Nations, Rome.
  • FAO. (2018b). Regional Conference on building a future for sustainable small scale fisheries in the Mediterranean and the Black Sea, 7-9 March 2016, Algiers, Algeria. Fisheries and Aquaculture Proceedings No. 58. Rome. Italy
  • FAO. (2018c). Report of the forty-first session of the General Fisheries Commission for the Mediterranean (GFCM), Budva, Montenegro, 16–20 October 2017. GFCM Report No. 41. Rome, Italy.
  • FAO. (2018d). Report of the second session of the COFI Advisory Working Group on Aquatic Genetic Resources and Technologies, Rome, Italy, 19–20 October 2017. FAO Fisheries and Aquaculture Report No. R1224. Rome, Italy.
  • FAO. (2018e). National Aquaculture Sector Overview: Ukraine. National Aquaculture Sector Overview Fact Sheets. Text by Bekh, V. In: FAO Fisheries Division, Rome. Updated 17/07/2017.
  • FAO. (2018f). Report of the Expert Meeting on Climate Change Implications for Mediterranean and Black Sea Fisheries. Rome, 4 to 6 December 2017. Fisheries and Aquaculture Report No. 1233. Rome, Italy.
  • FAO (2018g). The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean. Rome. 172 pp. Licence: CC BY-NC-SA 3.0 IGO.
  • FAO. (2019a). The State of the World’s Biodiversity for Food and Agriculture, J. Bélanger & D. Pilling (eds.). FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome. 572 pp. Retrieved from http://www.fao.org/3/CA3129EN/CA3129EN.pdf
  • FAO. (2019b). Project report “Contribution to the technical and policy support of the Ministry of Agrarian Policy and Food of Ukraine (MAPF) for the implementation of the Strategy for Agriculture and Rural Development 2016- 2020” (GCP/UKR/001/NOR), Rome, Italy.
  • FAO. (2020a). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
  • FAO. (2020b). The State of Mediterranean and Black Sea Fisheries 2020. General Fisheries Commission for the Mediterranean. Rome. https://doi.org/10.4060/cb2429en
  • FAO. (2020c). Fishery and Aquaculture Statistics. Global aquaculture production 1950-2018 (FishstatJ). In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 2020. Retrieved from www.fao.org/fishery/statistics/software/fishstatj/en/
  • FAO. (2021). The impact of COVID-19 on fisheries and aquaculture food systems, possible response, Information paper, November 2020. Rome. Retrieved from http://www.fao.org/documents/card/es/c/cb2537en/
  • Fitzer, S., Phoenix, V., Cusack, M. & Kamenos N.A. (2014). Ocean acidification impacts mussel control on biomineralisation. Scientific Reports, 4, 6218. https://doi.org/10.1038/srep06218
  • Fodchenko, I.A. (2017). Comparative analysis of pesticide quantity in bivalve mollusks in Ukraine and othercountries of the world. Bulletin of Summy National Agrarian University: scientific journal, 11 (41), 65-70. Retrieved from http://repo.snau.edu.ua/handle/123456789/6458/
  • Fossberg, J., Forbord, S., Broch, O.J., Malzahn, A.M., Jansen, H., Handå, A., Førde, H., Bergvik, M., Fleddum A.L., Skjermo J., Olsen Y. (2018). The Potential for Upscaling Kelp (Saccharina latissima) Cultivation in Salmon-Driven Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5, 418. https://doi.org/10.3389/fmars.2018.00418
  • Fontaine, P., Legendre, M., Vandeputte, M., & Fostier, A. (2009). Domestication de nouvelles espèces et développement durable de la pisciculture. Cahiers Agriculture, 18(2-3), 119-124. https://doi.org/ 10.1684/agr.2009.0293
  • Fourdain, L., Hamza, H., Bourdenet, D. & Massa, F. (2019). Capacity-building on allocated zones for aquaculture in the Mediterranean and the Black Sea FAO Aquaculture Newsletter No. 60, August 2019: 24-25, Retrieved from http://www.fao.org/3/ca5223en/ca5223en.pdf
  • Friedrich, J., Dinkel, C., Friedl, G., Pimenov, N., Wijsman, J., Gomoiu, M.T., Cociasu, A., Popa, L., Wehrli, B. (2002). Benthic nutrient cycling and diagenetic pathways in the North-western Black Sea. Estuarine, Coastal and Shelf Science, 54 (3), 369–383. https://doi.org/10.1006/ecss.2000.0653
  • Froehlich, H.E., Gentry, R.R. and Halpern, B.S. (2018). Global change in marine aquaculture production potential under climate change. Nature, Ecology & Evolution, 2, 1745–1750. https://doi.org/10.1038/s41559-018-0669-1 FSA. (2015). Information on the status of fishery sector of Ukraine. Retrieved from https://darg.gov.ua/files/1/infodovidka_ribcomplecs.pdf
  • FSA. (2019). Overview of aquaculture production in Ukraine based on statistical form 1-A fish (annual) for year 2019 by Fisheries State Agency of Ukraine. s.l.: s.n. Gelderen, R., Carson, J., Nowak, B. (2011). Experimentally induced marine flexibacteriosis in Atlantic salmon smolts Salmo salar. II. Pathology. Diseases of Aquatic Organisms, 95, 125–135. https://doi.org/10.3354/dao02329
  • Geldiay, R. & Balık, S. (1996). Turkey freshwater fish (Textbook) II. Printing. Ege University Faculty of Fisheries Publications No: 46, Textbook Index No: 16, Ege University Press house, Bornova– İzmir, 532 s.
  • GFCM. (2012). Resolution GFCM/36/2012/1 on guidelines on Allocated Zones for Aquaculture (AZA). Retrieved from http://bit.ly/Resolution-GFCM-36-2012-1
  • GFCM. (2018). Resolution GFCM/41/2017/1 on a strategy for the sustainable development of Mediterranean and Black Sea aquaculture. In: FAO. 2018. Report of the fortyfirst session of the General Fisheries Commission for the Mediterranean (GFCM), Budva, Montenegro, 16–20
  • October 2017. GFCM Report No. 41. Rome, Italy.
  • GFCM. (2019). Report of the workshop on animal health and risk analysis in finfish aquaculture, Larnaca, Cyprus, 3–4 October 2018. Eleventh Session of the Scientific Advisory
  • Committee on Aquaculture (CAQ), Malaga, Spain, 10–12 September 2019. Unpublished report.
  • Ginzburg, A.I., Kostianoy, A.G. and Sheremet, N.A. (2004). Seasonal and inter-annual variability of the Black Sea surface temperature as revealed from satellite data (1982–2000). Journal of Marine Systems, 52 (1–4), 33– 50. https://doi.org/10.1016/j.jmarsys.2004.05.002Gokalp, M., Kuehnhold, H., de Goeij, J.M. and Osinga, R. Depth and turbidity affect in situ pumping activity of the Mediterranean sponge Chondrosia reniformis (Nardo, 1847) (2020). Preprint.
  • Golumbeanu, M., Nicolaev, S. (editors) (2015). Study on Integrated Coastal Zone Management. Ex Ponto Publishing, Constanta, ISBN 978-606-598-397-7: 454 p. Goradze, R., Komakhidze, A., Goradze, I. (2013). The Channel Catfish in Georgian Aquaculture. Journal of Life Sciences, 7 (5), 532-538.
  • Goradze, R., Komakhidze, A., Mgeladze, M., Goradze, I., Diasamidze, R., Mikashavidze, E., Komakhidze, G. (2014). Importance of the Ecosystem Approach to Fisheries in Georgia. Importance of the Ecosystem Approach to Fisheries in Georgia. In: Lleonart J., Maynou F. (eds), The Ecosystem Approach to Fisheries in the Mediterranean and Black Seas. Scientia Marina, 78 (1), 111-115.
  • Gross, M., Mascarenhas, V., Wen, Z. (2015). Evaluating algal growth performance and water use efficiency of pilotscale revolving algal biofilm (RAB) culture systems. Biotechnology and Bioengineering, 112(10), 2040-50. https://doi.org/10.1002/bit.25618
  • Grosso, L., Rakaj, A., Fianchini, A., Morroni, L., Cataudella, S., Scardi, M. (2021) Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture, 534, 736268. https://doi.org/10.1016/j.aquaculture.2020.736268
  • Gucu, A.C. (2002). Can overfishing be responsible for the successful establishment of Mnemiosis leidyi in the Black Sea? Estuarine, Coastal and Shelf Science, 54, 439-451. Harvey, B., Soto, D., Carolsfeld, J., Beveridge, M. & Bartley,
  • D.M. (2017). Planning for aquaculture diversification: the importance of climate change and other drivers. FAO Technical Workshop, 23–25 June 2016, FAO Rome. FAO Fisheries and Aquaculture Proceedings No. 47. Rome, FAO. 166 pp.
  • Herbst, L.H., Costa, S.F., Weiss, L.M., Johnson, L.K., Bartell, J., Davis, R., Walsh, M., Levi, M. (2001). Granulomatous skin lesions in Moray eels caused by a novel Mycobacterium species related to Mycobacterium triplex. Infection and Immunity, 69, 4639– 4646.
  • Hidalgo, M., Mihneva, V., Vasconcellos M., and Bernal M. (2018). Climate change impacts, vulnerabilities, and adaptations: Mediterranean Sea and the Black Sea marine fisheries. In In book: Impacts of Climate Change on fisheries and aquaculture: Synthesis of current knowledge, adaptation, and mitigation options Editors: Manuel Barange, Tarub Bahri, Malcom Beveridge, Kevern Cochrane, Simon Funge-Smith, Florence Poulai. FAO Fisheries and Aquaculture Technical Paper No. 627(pp. 139-158).
  • Hollowed, A.B., Bond, N.A., Wilderbuer, T.K., Stockhausen, W.T., A’mar, Z.T., Beamish, R.J., Overland, J.E., Schirripa, M.J. (2009). A framework for modelling fish and shellfish responses to future climate change, ICES Journal of Marine Science, 66, 1584-1594. https://doi.org/10.1093/icesjms/fsp057
  • Holoștenco D.N., Onără D., Suciu R., Honț Ș., Paraschiv M. (2013). Distribution and genetic diversity of sturgeons feeding in the marine area of the Danube Delta Biosphere Reserve, Romania. Scientific Annals of the Danube Delta Institute, 19, 25-34.
  • Holoștenco D.N., Ciorpac M., Paraschiv M., Iani M., Honț Ș.,Taflan E., Suciu R., Rîșnoveanu G. (2019), Overview of the Romanian Sturgeon Supportive Stocking Programme in the Lower Danube River System. Scientific Annals of the Danube Delta Institute, 24, 21-30. https://doi.org/10.7427/DDI.24.03
  • Huyben, D., Bevan, D., Stevenson, R., Zhou, H., Moccia, R. (2018). Evaluation of membrane filtration and UV irradiation to control bacterial loads in recirculation aquaculture systems. Aquaculture International, 26, 1531–1540. https://doi.org/10.1007/s10499-018-0301-z
  • ICZM. (2020). The Commission on the Protection of the Black Sea Against Pollution. Guidelines on Integrated Coastal Zone Management in the Black Sea. Retrieved Nov 8, 2020 from http://www.blackseacommission.org/Downloads/Black_Sea_ICZM_Guidelin e/Black_Sea_ICZM_Guideline.pdf
  • IFAD. (2014). Guidelines for Integrating Climate Change Adaptation into Fisheries and Aquaculture Projects. 68pp.
  • Innal, D. & Erk'akan, F. (2006). Effects of exotic and translocated fish species in the inland waters of Turkey. Reviews in Fish Biology and Fisheries, 16, 39-50.
  • Ioniță, R., Zaharia, T., Dumitrescu, E., Alexandrov, L. (1983). Données preliminaires sur la reproduction artificielle de la truite-arc-en-ciel elevée en eau marine pontique. Cercetări Marine - Recherches Marines, 16, 217-226.
  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  • IPCC. (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. MassonDelmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)].
  • IRA-STRATEGMA (2020). Situational analysis of the situation of the fisheries sector in Bulgaria. BG14MFOP001-7.001 - Technical assistance of Maritime Affairs and Fisheries Operational Programme, pp. 393.
  • Jensen, O., Wroldsen, A.S., Lader P.F., Fredheim, A., Heide, M. (2007). Finite element analysis of tensegrity structures in offshore aquaculture installations. Aquacultural Engineering, 36(3), 272–84.
  • Jingchao, Z., and Kotani, K. (2012). The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective? Energy Economics, 34 (2), 381-388. https://doi.org/10.1016/j.Eneco.2011.12.011
  • Jonsson, B., Jonsson, N. (2009). A review of the likely effects of climate change on anadromous Atlantic salmon, Salmo salar and brown trout, Salmo trutta, with particular reference to water temperature and flow, Journal of Fish Biology, 75, 2381–2447. https://doi.org/10.1111/j.1095- 8649.2009.02380.x
  • Karayücel, S., Çelik, M. Y, Karayücel I, Erik. G., (2010). Growth and Production of Raft Cultivated Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819) in Sinop, Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10, 09-17. https://doi.org/10.4194/trjfas.2010.0102
  • Karayücel, S., Karayücel, İ., Erdem, M., Saygun, S. And Uyan, O., (2003). Growth and Production in Long-Line Cultivated Mediterranean Mussel (Mytilus galloprovincialis) in Sinop, Black Sea. The Israeli Journalof Aquaculture-Bamidgeh, 55(3), 169-178. Karlsen C., Hjerde E., Klemetsen T., Willassen N.P. (2017). Pan genome and CRISPR analyses of the bacterial fish pathogen Moritella viscosa. BMC Genomics, 18, 313. https://doi.org/10.1186/s12864-017-3693-7
  • Khan, M.A.Q., Ahmed, S.A., Catalin, B., Khodadoust, A., Ajayi, O., Vaughn, M. (2006). Effect of temperature on heavy metal toxicity to juvenile crayfish, Or-connects immunize (Hagen), Environmental Toxicology, 21 (5), 513-520. Khavtasi, M.; Makarova, M.; Lomashvili, I.; Phartsvania, A.; Moth-Poulsen, T.; Woynarovich, A. (2010) Review of fisheries and aquaculture development potentials in Georgia. FAO Fisheries and Aquaculture Circular. No. 1055/1. Rome, FAO. 2010. 82 p.
  • Kideys, A.E. (2002). Fall and rise of the Black Sea ecosystem. Science, 297.5586, 1482-1484.
  • Kideys, A.E. (2007). Knowledge from the Black Sea: A role model for ecosystem management. Rapp. Comm. int. Mer. Médit., 38.
  • Kılıç, A., (2008). Possible effects of global warming and aquatic species, Kemaliye 5th Traditional Fisheries Science and Culture Meeting (National), Erzincan. (In Turkish)
  • Kirpenko, N., Krot, Y. & Usenko, O. (2019). Surface Waters "Blooms", Fundamental and Applied Aspects. Hydrobiological Journal, 55(2), 18-30.
  • Kirpenko, N., Krot, Y. & Usenko, O. (2020). Toxicological Aspects of the Surface Water "Blooms" (a Review). Hydrobiological Journal, 56, 3-16.
  • Klisarova, D., Gerdzhikov, D., Kostadinova, G., Petkov, G., Cao, X., Song, Ch. & Zhou, Y. (2020). Bulgarian marine aquaculture: Development and prospects – A review. Bulgarian Journal of Agricultural Science, 26, 163-174.
  • Kovalenko, V. & Goncharuk, V. (2019). Ecological State of Aquatic Ecosystems of Ukraine Using the Dnipro River as an Example. Journal of Water Chemistry and Technology, 41, 151–157.
  • Kras, S., Hrytsynyac, I. & Kras, M. (2009). The influence microadding cobaltum and zincum on condition of system of antioxidant defence and a process of lipid peroxidation in the carp tissues. Fisheries Science of Ukraine, 1, 93-99.
  • Küçük, A. and Yıldırım, Y. (2001). Important viral diseases of fish. Journal of Etlik Vet Mikrobiyol, 28 (1), 13-22. (In Turkish)
  • Kukharev, N. and Romanov, V. (1998). The Fishery Industry in Ukraine. EASTFISH Fishery Industry. Volume 13. Lado-Insua, T., Ocampo, F.J., Moran, K. (2009). "Offshore mussel aquaculture: new or just renewed?" Oceans ’09 IEEE Bremen: Balancing Technology with Future Needs, art. No. 527826
  • Lebedev, S.A., Kostianoy, A.G., Bedanokov, M.K., Akhsalba, A.K., Berzegova, R.B. and Kravchenko, P.N. (2017) Climate changes of the temperature of the surface and level of the Black Sea by the data of remote sensing at the coast of the Krasnodar Krai and Republic of Abkhazia. Ecological Montenegrina, 14, 14–20.
  • Lee, S.K. and Dang, T.A. (2018). Application of AquaCrop model to predict sugarcane yield under the climate change impact: A case study of Son Hoa district, Phu Ye n province in Vietnam. Research on Crops, 19(2), 310-314. Le Gouvello R, Hochart L‐E, Laffoley D, Simard F, Andrade, C., Angel, D., Callier, M., De Monbrison, D., Fezzardi, D., Haroun, R., Harris, A., Hughes, A., Massa, F., Roque, E.,
  • Soto, D., Stead, S., Marino, G. (2017). Aquaculture and marine protected areas: Potential opportunities andsynergies. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 1–13.
  • Leng, L.; Li, J.; Wen, Z.; Zhou, W. (2018). Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresource Technology, 256, 529–542.
  • Liao, I.C., & Huang, Y.S. (2000). Methodological approach used for the domestication of potential candidates for aquaculture in Recent advances in Mediterranean aquaculture finfish species diversification. Zaragoza: CIHEAM, (Cahiers Options Méditerranéennes; n. 47). Seminar of the CIHEAM Network on Technology of Aquaculture in the Mediterranean on 'Recent advances in Mediterranean aquaculture finfish species diversification', 1999/05/24-28, Zaragoza (Spain). 394 pp.
  • Llewellyn, L.E. (2010). Revisiting the association between sea surface temperature and the epidemiology of fish poisoning in the South Pacific: Reassessing the link between cig-water and climate change, Toxicon, 56 (5), 691-697.
  • Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M., Miguel MauricioIglesias, M., Soares, A., Hospido, A. (2016). Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy, 179, 1251-1268. Lorenzen, K., Beveridge, M.C.M., & Mangel, M. (2012). Cultured fish: integrative biology and management of domestication and interactions with wild fish. Biological Reviews of the Cambridge Philosophical Society 87(3), 639–60. https://doi.org/10.1111/j.1469-185X.2011.00215.x
  • Lounas, R., Kasmi, H., Chernai, S., Amarni, N., Ghebriout, L., Meslem-Haoui, N. & Hamdi, B. (2020). Towards sustainable mariculture: some global trends. Thalassas, 36, 447–456. https://doi.org/10.1007/s41208-020- 00206-y
  • Macias, J.C., Avila Zaragozá, P., Karakassis, I., Sanchez-Jerez, P., Massa, F., Fezzardi, D., Yücel Gier, G., Franičević, V., Borg, J.A., Chapela Pérez, R.M., Tomassetti, P., Angel, D.L., Marino, G., Nhhala, H., Hamza, H., Carmignac, C. & Fourdain, L. (2019). Allocated zones for aquaculture: a guide for the establishment of coastal zones dedicated to aquaculture in the Mediterranean and the Black Sea. General Fisheries Commission for the Mediterranean. Studies and Reviews. No 97. Rome, FAO. 90pp. MAFF (2014). Multiannual National Strategic Plan for Aquaculture in the Republic of Bulgaria (2014-2020), pp 47.
  • MAFF (2020). Annual report on the state and development of agriculture. 2020 Agricultural Report. pp. 323. Magnusson H.B., Fridjonsson O.H., S. Andresson O.S., Benediktsd E., Gudmundsdotitir S., Andreisd V. 1994. Renibacterium salmoninarum, the Causative Agent of Bacterial Kidney Disease in Salmonid Fish, Detected by Nested Reverse Transcription-PCR of 16S rRNA Sequences. Applied and Environmental Microbiology, 4580-4583.
  • Maritime Spatial Plan for Black Sea. (2020). MARSPLAN. Retrieved Oct 22, 2020 from http://www.marsplan.ro/en/ MARSEA. (2020). European MSP Platform. Retrieved Oct 13, 2020 from https://www.msp-platform.eu/projects/marseaMassa, F., Onofri, L., & Fezzardi, D. (2017). Aquaculture in the Mediterranean and the Black Sea: A Blue Growth perspective. pp 93-123 in Handbook on the Economics and Management of Sustainable Oceans, pp 624 Edward Elgar Publishing.
  • Mathews, C.P. & Samuel, M. (1992). A simple and objective bioeconomic index for choosing species for culture, Naga, The WorldFish Center, 15(2), 19-21.
  • Meaden, G.J., Aguilar-Manjarrez, J., Corner, R.A., O’Hagan, A.M. & Cardia, F. (2016). Marine spatial planning for enhanced fisheries and aquaculture sustainability – its application in the Near East. FAO Fisheries and Aquaculture Technical Paper No. 604. Rome, FAO
  • MEDAR/MEDATLAS II. (2020). Mediterranean Data Archaeology and Rescue. Retrieved Oct 09, 2020 from http://www.ifremer.fr/medar/
  • Medinets, S., Moklyachuk, L., Utkina, K., Howard, C., Sutton, M., Medinets, V. (2017). Development of Nitrogen Load Assessment System in the Dniester River Catchment. Kharkiv National V.N. Karazin University Herald, 16, 123- 131.
  • Memis, D., Demir, N., Eroldogan, O.T., & Kucuk, S. 2002. Aquaculture in Turkey. The Israeli Journal of Aquaculture, 54(1), 3-9.
  • Memiş, D., Ercan, E., Kurtoğlu, İ.Z., Akbulut, B., Aydın, İ., Çakmak, E., Savaş, H., Çavdar, Y.ve Aksungur, N. 2008. Gonand developments of Sturgeon and egg stripping. Production and Preservation Workshop for Sturgeon Species, October 30-31, 2008. Workshop Pub. Book, Sayfa: 81-85. (In Turkish)
  • Miladinova, S., Stips, A., Garcia-Gorriz, E. and Moy, D.M. (2016). Black Sea ecosystem model: setup and validation. EUR 27786. https://doi.org/10.2788/601495 Miladinova, S., Stips, A., Garcia-Gorriz, E. and Moy, D.M. (2017) Black Sea thermohaline properties: Long-term trends and variations. Journal of Geophysical Research Oceans, 122, 5624-5644. https://doi.org/10.1002/2016JC012644
  • Ministry of Agrarian Policy and Food of Ukraine (Minagro of Ukraine). (2017). Adaptation strategy to climate change in agriculture, forestry and fisheries of Ukraine until 2030. Draft order of the Cabinet of Ministers of Ukraine Retrieved from https://www.uahhg.org.ua/wpcontent/uploads/2019/08/Стратегія-адаптації-дозміни-клімату-сільського-лісового-та-рибногогосподарств-України-до-2030-року_29.05.19.pdf
  • Ministry of Agriculture and Forestry. (2020). Statistics of fishery products in Turkey. 21 pp. Mimura, N. (2013). Sea-level rise caused by climate change and its implications for society. The Proceedings of the Japan Academy, Series B Physical and Biological Sciences, 89(7), 281–301. https://doi.org/10.2183/pjab.89.281
  • Mishra, A., Nam, G.H., Gim, J.A., Lee, H.E., Jo, A., Kim, H.S. (2018). Current Challenges of Streptococcus Infection and Effective Molecular, Cellular, and Environmental Control Methods, Aquaculture. Molecules and Cells, 41(6), 495-505. https://doi.org/10.14348/molcells.2018.2154
  • MISIS. (2020). European MSP Platform. Retrieved Oct 13, 2020 from https://www.msp-platform.eu/practices/misisblack-sea-marine-atlas Mohamad N., Amal M.N.A Yasin I.S.Md., Saad M.Z., Nasruddin N.S., Al-saari N., Mino S., Sawabe T. (2019). Vibriosis incultured marine fishes: a review. Aquaculture, 512, 734289. https://doi.org/10.1016/j.aquaculture.2019.734289
  • Mol, S. and Doğruyol, H. (2012). The effects of Climate Change on Fisheries Production and Consumption. Journal of Fisheries Sciences, 6 (4), 341-356. https://doi.org/10.3153/jfscom.akdeniz008 (In Turkish)
  • Molony, B.W., R. Lenanton, R., G. Jackson, G. and Norriss, J. (2005). Stock enhancement as a fisheries management tool. Reviews in Fish Biology and Fisheries, 13 (4), 409– 432.
  • Moore, S.K., Trainer, V.L., Mantua, N.J., Parker, M.S., Laws, E.A., Backer, L.C., Fleming, L.E., (2008). Impacts of climate variability and future climate change on harmful algal blooms and human health, Environmental Health, 7 (Suppl 2): S2. https://doi.org/10.1186/1476-069X-7-S2-S4 Murray, J.W.; Jannasch, H.W.; Honjo, S; Anderson, R.F.; Reeburgh, W.S.; Top, Z.; Friederich, G.E.; Codispoti, L.A.;
  • Izdar, E. (1989). Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature, 338 (6214), 411–413. Murray, F., Bostock, J., Fletcher, M. (2014). Review of RAS technologies and their commercial application. Final report. Retrieved from http://www.hie.co.uk/
  • Myslyva, T. (2016). Heavy metals and microelements in organs and tissues of representatives of ichthyofauna of small rivers of Zhytomyr Polisya. Bulletin of Zhytomyr National Agroecological University, 1(53), 22-34.
  • Nardelli, B.B., Colella, S., Santoleri, R., Guarracino, M. and Kholod, A. (2010) A re-analysis of Black Sea surface temperature. Journal of Marine Systems, 79 (1–2), 50– 64. https://doi.org/10.1016/j.jmarsys.2009.07.001
  • Naylor, R. and Burke, M. (2005). Aquaculture and ocean resources: raising tigers of the sea. Archived 2010-07-16 at the Wayback Machine Annual Review of Environmental Resources, 30, 185–218.
  • NEF. (2016). Fish dependence – 2016 update. The reliance of the EU on fish from elsewhere. New Economics Foundation (NEF).
  • Negreanu-Pîrjol, B., Negreanu-Pîrjol, T., Bratu, M., Sîrbu, R., Roncea, F., Paraschiv, G., Meghea, A. (2011). Physicalchemical characterization of some green and red macrophyte algae from the Romanian Black Sea littoral. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 12(2), 173- 184. https://doi.org/10.1134/S1063074017020110
  • Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231 (1–4), 361-391.
  • Niţă V., Zaharia T., Maximov V., Nicolae C.G. (2012). Preliminary Data Regarding the Possibilities of Rearing the North Sea Turbot Scophthalmus maximus at the Romanian Littoral. Proceedings of the International Conference “Scientific and Technical Innovation in the Blue Economic Zone”, Yantai, China, Didactic and Pedagogic Publishing, Bucharest, ISBN 978-973-30-3305- 9: 160-167.
  • Niţă, V., Theodorou, J., Nicolaev, S., Nenciu, M.I. (2019) Advancing Shellfish Aquaculture as a Sustainable Food Procurement Option in Emerging Black Sea Riparian Countries: Romania Country Report. Scientific Papers. Series D. Animal Science., LXII (2), ISSN 2285-5750; ISSN CD-ROM 2285-5769; ISSN Online 2393-2260; ISSN-L
  • 2285-5750.Niţă, V., Nenciu, M.I. (2017). Using the Recirculating Technology in a Pilot-System for Mariculture at the Romanian Black Sea Coast. Journal of Environmental Protection and Ecology, 18 (1), 255-263.
  • Niță, V., Nenciu, M.I., Nicolae, C.G. (2018a). Experimental Rearing of the Golden Gray Mullet Liza aurata (Risso, 1810) in a Recirculating System at the Black Sea. “Agriculture for Life, Life for Agriculture” Conference Proceedings, 1 (1), 149-154. https://doi.org/10.2478/alife-2018-0022
  • Niță, V., Nenciu, M.I., Raykov, V., Nicolae, C.G. (2018b). First Attempt of Rearing the Siberian Sturgeon (Acipenser baerii Brandt, 1869) in Black Sea Water. AgroLife Scientific Journal, ISSN 2285-5718; ISSN CD-ROM 2285- 5726; ISSN ONLINE 2286-0126; ISSN-L 2285-5718, 97- 102.
  • Niță, V., Nenciu, M.I. (2020a). Practical Guideline for Shellfish Culture. CD Press Publishing, Bucharest, ISBN 978-606- 528-510-1, 81 p.
  • Niţă, V., Nenciu, M.I. (2020b). Biological and Ethological Response of Black Sea Golden Grey Mullet Chelon auratus (Risso, 1810) Fries to Different Salinities and Temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 20 (11), 777-783.
  • Niţă, V., Massa, F., Fourdain, L., Nenciu, M.I. 2020. Establishing the Suitability of the Agigea - Eforie Area for Designation as Allocated Zone for Aquaculture (AZA) and for Unlocking the Potentiality of Mariculture in Romania. Cercetări Marine, Issue 50/2020, ISSN 0250-3069, pp. 152-173.
  • Noyes, P.D., McElwee, M.K., Miller, H.D., Clark, B.W., Van Tiem, L.A., Walcott, K.C., Erwin, K.N., Levin, E.D., (2009). The toxicology of climate change: Environmental contaminants in a warming world, Environment International, 35 (6), 971-986.
  • Oguz T., Gilbert D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960– 2000: evidence for regime shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep-Sea Research I, 54, 220–242.
  • Ojeda, J., (2015). Advancing aquaculture innovation pp 72-82 In Regional Conference “Blue Growth in the Mediterranean and the Black Sea: developing sustainable aquaculture for food security”, 9–11
  • December 2014, Bari, Italy, edited by Fabio Massa, Riccardo Rigillo, Dominique Bourdenet, Davide Fezzardi, Aurora Nastasi, Hélène Rizzotti, Wasseem Emam and Coline Carmignac. FAO Fisheries and Aquaculture Proceedings No. 46. Rome.
  • Okumuş, İ., Kurtoglu I.Z. & Atasaral, Ş. (2007). General Overview of Turkish Sea Trout (Salmo trutta L.) Populations, In: G. Harris and N. Milner (Eds.), Sea Trout: Biology, Conservation and Management. Blackwell Publishing Ltd., London: 115-128.
  • Onără D., Holoștenco D., Paraschiv M., Suciu R. (2014). Preliminary genetic variability of Lower Danube River young of the year (YOY) beluga sturgeon Huso huso (Linnaeus, 1758) using mtDNA markers. Journal of Applied Ichthyology, 30, 1286-1289.
  • Onciu, T. (1984). Donnèes sur la correlation entre la nouriture et la croissance de crevettes (Palaemon adspersus). Rapp. Comm. Int. Mer. Mèdit., CIESM, Monaco, 29 (4), 127-29.
  • Özdemir, A., Akbulut, B., 2007. Researches on Present Status of Sturgeon Population and Rearing Possibilities in Turkey. Program of International Scientific-Practical Seminar On Sturgeon Breeding, BIOS, March 12-16, 2007, Astrakhan.
  • Özsoy, E. (2017). Identifying the most suitable areas for sea cage fish farming in Ordu Province. University of Ordu Institute for Graduate Studies in Science and Technology Department of Fisheries Technology Engineering, 2017 MSc. Thesis, 57p.
  • Parus, A., and Karbowska, B. (2020). Marine Algae as Natural Indicator of Environmental Cleanliness. Water Air Soil Pollut, 231, 97. https://doi.org/10.1007/s11270-020- 4434-0
  • PEGASO. (2020). European MSP Platform. Retrieved Oct 12, 2020 from https://www.msp-platform.eu/practices/pegasospatial-data-infrastructure
  • PlanCoast. (2020). Retrieved Nov 3, 2020 from http://www.plancoast.eu/
  • Polat, H., Özen, M.R., & Keskin, Y.S. (2018). The Embryonic Development of Black Sea Turbot (Psetta maxima Linnaeus, 1758) Eggs in Different Incubation Temperatures and Salinities. Turkish Journal of Fisheries and Aquatic Sciences, 18(3), 475-482. https://doi.org/10.4194/1303-2712-v18_3_13
  • Porumb, F. (1999-2000). Recherches d’aquaculture. Cercetări Marine - Recherches Marines, 32-33, 82-87. Powell, A. and Scolding, J.W.S. (2016). Direct application of ozone in aquaculture systems. Reviews in Aquaculture, 10 (2), 424-438.
  • Price, C., Black, K.D., Hargrave, B.T., Morris, J.A. (2015). Marine cage culture and the environment: effects on water quality and primary production. Aquaculture Environment Interaction., 6, 151-174.
  • Prodanov, K. Mikhailov, K.; Daskalov, G. Maxim, C. Chashchin, A. Arkhipov, A. Shlyakhov, V. Ozdamar, E. (1997). Environmental management of fish resources in the Black Sea and their rational exploitation. Studies and Reviews. General Fisheries Council for the Mediterranean. No. 68. FAO, Rome, 178p.
  • Reid, G.K., Chopin, T., Robinson, S.M.C., Azevedo, P., Quinton, M., Belyea, E. (2013). Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture, 408– 409, 34–46.
  • Reith M.E., Singh R.K., Curtis B., Boyd J.M., Bouevitch A., Kimball J., MunhollandJ., Murphy C., Sarty D., Williams J., Nash J.HE., Johnson S.C., Brown L.L. (2008). The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics, 9, 427. https://doi.org/10.1186/1471-2164- 9-427
  • Report TR90 (2012). Doğu Karadeniz Bölgesi Su Ürünleri Sektör Raporu. Sözleşme No: TR90/11/DFD/21. Eastern Black Sea Development Agency Central Fisheries Research Institute. Romanian National Agency for Fishing and Aquaculture. (in preparation). National Multiannual Strategic Plan for Aquaculture Development 2021 – 2030, unpublished data.
  • Republic of Turkey. (2004). Aquaculture Regulation No. 25507 of 29 June 2004. Resolution on guidelines on allocated zones for aquaculture(AZA), GFCM/36/2012/1. (2020). The General Fisheries Commission for the Mediterranean (GFCM). Retrieved Oct 11, 2020 from https://gfcmsitestorage.blob.core.windows.net/docum ents/Decisions/GFCM-Decision--RESGFCM_36_2012_1-en.pdf
  • ROMFISH. (in preparation). Romanian Fish Farmers’ Association, adapted from National Multiannual Strategic Plan for Aquaculture Development 2021 – 2030.
  • Roșioru, D., Coatu, V., Oros, A., Vasiliu, D., Țigănuș, D. (2012). Marine environment quality for the growth and exploitation of the main mollusks from the Romanian Black Sea Coast according to the EU legislation. Journal of Environmental Protection and Ecology, 13(3A), 1799- 1805.
  • Rozas M. and Enriquez R. (2014). Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. Journal of Fish Diseases, 37, 163–188. https://doi.org/10.1111/jfd.12211
  • Russian Federation. (2013). On Aquaculture (Fish Farming) and on Amendments to Certain Legislative Acts of the Russian Federation. 2013. Federal Law no. 148-FL July 2, 2013 Retrieved April 8, 2021 from http://internet.garant.ru (In Russian)
  • Russian Federation. (2020). Results of the activities of the Federal Agency for Fisheries in 2019 and tasks for 2020. 2020. Material for Meeting of the Board of the Federal Agency for Fisheries. September, 25, 2020. Retrieved April 27, 2021 from http://fish.gov.ru/files/documents/ob_agentstve/kolleg iya/itogi_2020.pdf (in Russian)
  • Russian Federation. (2021). Results of the activities of the Federal Agency for Fisheries in 2020 and tasks for 2021. 2021. Material for Meeting of the Board of the Federal Agency for Fisheries. April 2021. Retrieved April 8, 2021 from http://fish.gov.ru/files/documents/ob_agentstve/kolleg iya/itogi_2021.pdf (in Russian)
  • Ruzzante, D.E. (1994). Domestication effects on aggressive and schooling behaviour in fish. Aquaculture, 120(1-2), 1-24. https://doi.org/10.1016/0044-8486(94)90217-8 Sabrié.M.L., Gibert-Brunet, E., Mourier, T. (2016). The Mediterranean Region under Climate Change A scientifique update IRD Edition, Marseill ISBN : 978-2- 7099-2219-7
  • Sağlam, N.E., Düzgüneş, E., Balık, İ., (2008). Global Warming and Climate Change, Ege University Journal of Fisheries, 25(1), 89–94. (In Turkish)
  • Salihoglu, I. (2000). Black Sea Integrated Coastal and Shelf Zone Monitoring and Modeling (INCOM) Program Science Plan. Report–248, SALIHOGLU, 2000 Committee on the Challenges of Modern Society (CCMS).
  • Sanchez-Jerez, P., Karakassis, I., Massa, F., Fezzardi, D., AguilarManjarrez, J., Soto, D., Chapela, R., Avila, P., Macias, J.C., Tomassetti, P., Marino, G., Borg, J.A., Franičević, V., Yücel-Gier, G., Fleming, I.A., Biao, X., Nhhala, H., Hamza, H., Forcada, A., Dempster, T. (2016). Aquaculture’s struggle for space: the need for coastal spatial planning and the potential benefits of Allocated Zones for Aquaculture (AZAs) to avoid conflict and promote sustainability. Aquacult Environ Interact, 8, 41–54.
  • Schiedek, D., Sundelin, B., Readman, J.W., Macdonald, R.W. (2007). Interactions between climate change and contaminants, Marine Pollution Bulletin, 54, 1845-1856.Scorvo-Filho, J.D., Frascá-Scorvo, C.M.D., Cordeiro, J.M.A., &
  • Souza, F.R.A. (2010). A tilapicultura e seus insumos, relações econômicas. Revista Brasileira de Zootecnia, 39, 112–118. https://doi.org/10.1590/S1516-35982010001300013
  • Sekhniashvili, D. and Kathijotes, N. (2018). Georgia: Blue Economy in the Marine Sector. Research Institute for European and American Studies (RIEAS), Research Paper N. 176, 21 pp.
  • Shalva, J. (2002). The rivers of the Black Sea. European Environmental Agency technical report. EEA, 2002.
  • Shapiro, G.I., Aleynik, D.L. and Mee, L.D. (2010) Long term trends in the sea surface temperature of the Black Sea. Ocean Science, 6, 491–501. https://doi.org/10.5194/os6-491-2010
  • Shevchenko, O. (2014). Climate Change Vulnerability Assessment: Ukaine. s.l., Eastern Partnership Climate Forum and Working Group of Climate Change NGOs. Shevchenko, P.G., Martseniuk, N.O., Bazaeva, A.V., Khalturin, M.B., Boiko, Y.V., 2019. Influence of climate change on species composition and quantity of Dnipro reservoirs ichthyofauna. Kyiv, Scientific Methodological Center "Agroosvita".
  • Sirakov, I.; Velichkova, K.; Stoyanova, S.; Staykov, Y. (2015). The importance of microalgae for aquaculture industry. Review. Int. J. Fish. Aquat. Stud., 2, 81–84.
  • Sokolova I.M. and Lannig G. (2008). Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Climate Research., 37, 181–201. https://doi.org/10.3354/cr00764
  • Soto, D., White, P. and Yücel-Gier, G. (2009). TCP/TUR/3101: Developing a roadmap for Turkish marine aquaculture site selection and zoning using an ecosystem approach to management in FAN - FAO Aquaculture Newsletter. No.43. December 2009 Rome, FAO. 2009 Pag.8-9. Sorensen, J., Gable, F., Gardner, M. and Hinrichsen. (1997). The Black Sea: Another Environmental Tragedy in Our Times? In: 3rd Intern. Conf. on the Mediter. Coastal Environ., MEDCOAST `97 (E. Özhan, ed.), Quawra, Malta, Vol. 2, p. 741-752. Ankara, Turkey.
  • Sorokin, Y.I. (1983) The Black Sea. In Estuaries and Enclosed Seas. Ecosystems of the World, 26, 253-291.
  • Stanev, E. (2005). "Black Sea dynamics." Oceanography, 18 (2), 56-75.
  • State Statistics Service of Ukraine, 2019. Extraction of aquatic bioresources in 2019. s.l.: s.n.
  • Stelmakha, L.V. and Stepanovab, O.A. (2020). Effect of Viral Infection on the Functioning and Lysis of Black Sea Microalgae Tetraselmis viridis (Chlorophyta) and Phaeodactylum tricornutum (Bacillariophyta). Inland Water Biology, 13 (3), 417–424.
  • Stepanova, O.A. (2017). Interaction between algal viruses and the mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalvia: Mytilidae) in experiment, Russ. J. Mar. Biol., 43, 127-131.
  • STRATEGMA-JUNCTION (2018). Marketing report on fish species and fish products with good and very good market potential. Maritime Affairs and Fisheries Operational Programme pp.184.
  • Strezov, A. and Nonova, T. (2005). Environmental Monitoring of Heavy Metals in Bulgarian Black Sea Green Algae. Environmental Monitoring and Assessment., 105(1-3), 99-110.
  • Suantika, G., Dhert, P., Sweetman, E., O’Brien, E., Sorgeloos, P. (2003). Technical and economical feasibility of a rotifer recirculation system. Aquaculture, 227, 173–189. Supporting the MSFD directive in the Black Sea. (2020).
  • Copernicus Marine Service. Retrieved Nov 03, 2020 from https://marine.copernicus.eu/services/usecases/supporting-msfd-directive-black-sea
  • Sytnik, Y., Arsan, O. & Zasekin, D. (2008). Chlorine organic pesticides in fish of Dniepr river, Dnieper reservoirs and Dnieper-Bug Estuary. Fisheries Science of Ukraine, 4, 55- 65.
  • Szeląg-Sikora, A., Niemiec, M., Sikora, J. (2016). Assessment of the content of magnesium, potassium, phosphorus and calcium in water and algae from the Black Sea in selected bays near Sevastopol. Journal of Elem., 21(3), 915-926. https://doi.org/10.5601/jelem.2015.20.4.969
  • Tabak, İ., Aksungur, M., Zengin, M., Yılmaz, C., Aksungur, N., Alkan, A., Zengin, B. & Mısır, D.S. (2001). Bioecological Characteristics and Culture of Black Sea Trout (Salmo trutta labrax), TAGEM/HAYSUD /98/12/01/007, Trabzon Central Fisheries Research Institute, Project Work, Trabzon.
  • Telesca, L., Peck, L.S., Sanders, T., Thyrring, J., Sejr, M.K., Harper, E.M. (2019). Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change. Global Change Biology, 25(12), 4179-4193.
  • Teletchea, F., & Fontaine, P. (2012). Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries, 15(2), 181–195. https://doi.org/10.1111/faf.12006
  • Tirado, M.C., Clarke, R., Jaykus, L.A., McQuat-ters-Gollop, A., Frank, J.M. (2010). Climate change and food safety: a review, Food Research International, 43 (7), 1745-1765. Toranzo, A.E., Magarinos, B., Romalde, J.L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246, 37– 61.
  • Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R., Helmus, M.R., & Jin, L.S. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology: A guide to phylogenetic metrics for ecology. Biological Reviews., 92(2), 698–715. https://doi.org/10.1111/brv.12252.
  • Tugrul, S., Basturk, O., Saydam, C., & Yilmaz, A. (1992). Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature, 359 (6391), 137-139. TUIK. (2020). Turkish Statistical Institute, Fisheries Statistics Database. Retrieved Nov 8, 2020 from https://biruni.tuik.gov.tr/medas/?kn=97&locale=en
  • Türker, A., Yiğit, M., Ergün, S., Karaali, B. and Erteken, A. (2005). Potential of poultry by-product meal as a substitute for fishmeal diets for Black Sea turbot Scophthalmus maeticus: growth and nutrient utilization in winter. The Israeli Journal of Aquaculture-Bamidgeh, 57(1), 49-61.
  • Turkish Ministry of Agriculture and Forestry (2020). Fisheries Statistics (In Turkish). Ankara. Retrieved from https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikl er/Su%20%C3%9Cr%C3%BCnleri%20Veri%20ve%20D% C3%B6k%C3%BCmanlar%C4%B1/Su- %C3%9Cr%C3%BCnleri-%C4%B0statistikleri.pdf
  • Uçal, O. & Benli, H.A. (1993). Seabass fish and its breeding. Ministry of Agriculture and Rural Affairs Fisheries Research Institute. Bodrum. Seri A, Pub. No. 9, 72 s. UNEP/GEF. (1997). Global Environment Facility (GEF) Black SeaTransboundary Diagnostic Analysis. UNEP (United
  • Nations Environment Programme), New York, U.S. Ustaoğlu Tırıl, S., Zengin, M., Akbulut, B., Memis, D., Alagil, F., & Dağtekin, M. (2011). A participatory approach to tagging and monitoring as an initial step in developing a sturgeon conservation strategy along the Turkish Black Sea Coast. Journal of Applied Ichthyology, 27(2), 411- 414.
  • Vyshnevskyi, V. (2019). Spatial temporal variability of algal bloom in the Dnipro reservoirs. Ukrainian Journal of Remote Sensing, 20, 18-27.
  • Wang, J.; Zhou, W.; Yang, H.; Wang, F.; Ruan, R. (2015). Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater. Bioresour. Technol., 196, 668–676.
  • Yanovych, D., Hrytsyniak, I. & Shvets, T. (2016). Application of Salmonids (salmonidae) in the biomonitoring of aquatic environment (a review). Ribogospodarska Nauka Ukrainy, 1(35), 5‐30.
  • Zaharia, T., Micu, D., Micu, S., Alexandrov, L., Dumitrescu, E. (2006). Experiments for Breeding of Autochtonous Shrimps at the Romanian littoral, Aiming to the Treatment of Resulted Effluents. Cercetări marineRecherches marines, 36, 145-160. Zaharia, T., Maximov, V., Niță, V., Staicu, V., Lazăr, L., Sîrbu, R. (2008). Preliminary results regarding sturgeon breeding on the Romanian littoral. Cercetări Marine - Recherches Marines, 38, 207-222.
  • Zaharia, T., Niță, V., Nenciu, M.I. (2017). Background of Romanian aquaculture (in Romanian). Bucharest, CD Press Publishing, ISBN 978-606-528-393-0: 273 p. Zaharia, T., Onea, D., Niţă, V., Maximov, V., Staicu, V., Lazăr, L.,
  • Sîrbu, R. (2011). Russian sturgeon (Acipenser gueldenstaedti): Comparative breeding in fresh andmarine water on the Romanian littoral. Journal of Environmental Protection and Ecology, 12 (3A), 1386- 1393.
  • Zaitsev, Y. and Mamaev, V. (1997). Biological diversity in the Black Sea: Main changes and ensuing conservation problems. In Proceedings of the Third International Conference on the Mediterranean Coastal Environment, MEDCOAST `97, p. 171.
  • Zamora, L.N., Yuan, X., Carton, A.G., Slater, M.J. (2016). Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges. Reviews in Aquaculture, 10(1), 57- 74. https://doi.org/10.1111/raq.12147
  • Zengin, M., & Gümüs, A. (2013). An investigation on the recruitment of hatchery-reared turbot (Psetta maxima Pallas, 1811) juveniles to natural population in the eastern Black Sea. Rapp. Comm. int. Mer Médit, (40). Zengin, M. (2002). Growth and sexual maturation of tagged hatchery-bred turbot Psetta maxima released and recaptured in the Black Sea. Aquaculture Studies (Yunus Research Bulletin), 2002(4).
  • Zengin, M., Polat, H., Kutlu, S., Gümüş, A., Başçınar, N.S., Emiral, E. (2005). Investigation of Natural Stock Inclusion and Bioecological Characteristics of Cultured Juvenile Turbot (Psetta maxima) Specimens. Central Fisheries Research Institute (SUMAE), Project Report. (In Turkish). Zlateva, P., Dimitrov, R. (2019). Possibilities of using algae for renewable energy production in the Black Sea region. 11th Electrical Engineering Faculty Conference (BulEF). 11-14 Sept. 2019. Varna, Bulgaria, Bulgaria. https://doi.org/10.1109/BulEF48056.2019.9030765
  • Zolotarev, V. (1996). The Black Sea ecosystem changes related to the introduction of new mollusc species. Marine Ecology, 17 (1-3), 227-236.