Kafatasındaki iki üçgenden cinsiyet tahmini

İskeletten cinsiyet tahmini, kimliği belirsiz bir iskelet kalıntısının biyolojik profilini oluşturmak için yapılan önemli bir analizdir. Kafatasından alınan doğrusal ölçümlerle üçgen alanı hesaplanmakta ve cinsiyet tahmini için modeller geliştirilmektedir. Bu çalışmanın amacı kafatasındaki iki üçgenden (yüz ve occipital) diskriminant fonksiyon denklemleri türetmektir. Araştırmanın materyali Geç Osmanlı Dönemi’ne tarihlendirilen ve İstanbul Karacaahmet Mezarlığı’ndan toplanan 112 bireye (56 erkek ve 56 kadın) ait kafatasından oluşmaktadır. Cinsiyetleri bilinen bu serinin kafataslarından 6 doğrusal ölçüm alınmış, yüz ve occipital üçgen alanları Heron formülüyle belirlenmiştir. Gözlem içi ve gözlemciler arası hatayı belirlemek için TEM, rTEM, R katsayısı ve ICC hesaplanmıştır. Her bir kriterin cinsiyet ayırt etme gücü ROC eğrisi analiziyle değerlendirilmiştir. Cinsiyetler arasındaki farklılıkları belirlemek için t-testi, formüller oluşturmak için diskriminant fonksiyon analizi yapılmıştır. Çalışmada 6 ölçümün gözlem içi ve gözlemciler arası hata oranlarının düşük olduğu belirlenmiştir (TEM = 0,16-0,94 mm; rTEM = %0,74-2,08; R = 0,91-0,99; ICC = 0,951-0,992). Tüm değişkenler cinsiyetler arasında anlamlı farklılık göstermiştir (p<0,05). ROC analizine göre üçgen alanlarının cinsiyet ayırt etme güçleri benzer sonuçlar vermiştir (EAA; occipital üçgen alanı 0,727, yüz üçgen alanı 0,736). Araştırma sonucunda kurulan 4 denklemin %67 ile %73,2 arasında değişen oranlarda cinsiyeti doğru sınıflandırdığı belirlenmiştir.

Sex estimation from two triangles on the skull

Sex estimation from skeletons is an important analysis to construct a biological profile of an unidentified skeletal remains. Triangle area is calculated with linear measurements taken from the skull, and models are being developed for sex estimation. The aim of this study was to derive discriminant function equations from two triangles in the skull. The material of the study consists of the skulls of 112 individuals (56 males and 56 females) which are dated to the Late Ottoman Period and collected from the Istanbul Karacaahmet Cemetery. Six linear measurements were taken from the skulls of this series of known sex, and the facial and occipital triangle areas were determined by the Heron formula. TEM, rTEM, R coefficients and ICC were calculated to determine the intra-observer and inter-observer error. The sex discrimination power of each criterion was evaluated by ROC curve analysis. T-test was used to determine the differences between the sexes, and discriminant function analysis was used to create formulas. In the study, it was determined that the intra-observer and inter-observer error rates of 6 measurements were low (TEM = 0.16-0.94 mm; rTEM = 0.74-2.08%; R = 0.91-0.99; ICC = 0.951-0.992). All variables differed significantly between sex (p<0.05). According to the ROC analysis, the sex discrimination power of the triangle areas was similar (AUC; occipital triangle area 0.727, facial triangle area 0.736). As a result of the present study, it was determined that the 4 equations established correctly classified sex at rates ranging from 67% to 73.2%.

___

  • Bakirci, S., Kafa, I. M., Coskun, I., Buyukuysal, M. C., ve Barut, C. (2016). A comparison of anatomical measurements of the infraorbital foramen of skulls of the modern and late Byzantine periods and the golden ratio. International Journal of Morphology, 34(2), 788-795. https://doi.org/10.4067/S0717-95022016000200057
  • Başaloğlu, H. K., Çeri, N. G., Turgut, M., İpek, E. D., ve Sakallı, G. (2021). Validity of metric assessment of mastoid triangle in sex determination: An anatomical study. Meandros Medical and Dental Journal, 22, 317-323. https://doi.org/10.4274/meandros.galenos.2021.58672
  • Bethard, J. D., ve VanSickle, C. (2020). Applications of sex estimation in paleoanthropology, bioarchaeology, and forensic anthropology. A. R. Klales (Ed.) içinde, Sex estimation of the human skeleton: History, methods, and emerging Techniques (s. 25-34). Academic Press. https://doi.org/10.1016/B978-0-12-815767-1.00003-1
  • Christensen, A. M., Passalacqua, N. V., ve Bartelink, E. J. (2014). Forensic anthropology: Current methods and practice. Academic Press. https://doi.org/10.1016/C2013-0-09760-5
  • Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284-290. https://doi.org/10.1037/1040-3590.6.4.284
  • de Almeida Júnior, E., Araújo, T. M., Galvão, L. C. C., ve Campos, P. S. F. (2010). Investigation of the sex through a triangular facial area shaped by the spots’ intersection: the right and left infraorbital foramen and the prosthion, in adults’ dry skull. Journal of Medical and Biological Sciences, 9(1), 8-12. https://doi.org/10.9771/cmbio.v9i1.4726
  • Delwing, F., Tinoco, R. L. R., Miranda, G. E., Lima, L. N. C., Francesquini Júnior, L., ve Daruge Júnior, E. (2021). Sex dimorphism according to the nasozygomatic triangle. Brazilian Journal of Oral Sciences, 20, e210624. https://doi.org/10.20396/bjos.v20i00.8660624
  • Franklin, D., Cardini, A., Flavel, A., ve Marks, M. K. (2014). Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population. International Journal of Legal Medicine, 128(5), 861-872. https://doi.org/10.1007/s00414-014-0999-8
  • Garvin, H. M., Sholts, S. B., ve Mosca, L. A. (2014). Sexual dimorphism in human cranial trait scores: Effects of population, age, and body size. American Journal of Physical Antropology, 154(2), 259-269. https://doi.org/10.1002/ajpa.22502
  • Godde, K. (2015). Secular trends in cranial morphological traits: a socioeconomic perspective of change and sexual dimorphism in North Americans 1849–1960. Annals of Human Biology, 42(3), 253-259. https://doi.org/10.3109/03014460.2014.941399
  • Harris, S. M., ve Case, D. T. (2012). Sexual dimorphism in the tarsal bones: implications for sex determination. Journal of Forensic Sciences, 57(2), 295-305. https://doi.org/10.1111/j.1556-4029.2011.02004.x
  • Inskip, S., Scheib, C. L., Wohns, A. W., Ge, X., Kivisild, T., ve Robb, J. (2019). Evaluating macroscopic sex estimation methods using genetically sexed archaeological material: The medieval skeletal collection from St John’s Divinity School, Cambridge. American Journal of Physical Antropology, 168(2), 340-351. https://doi.org/10.1002/ajpa.23753
  • Jain, D., Jasuja, O. P., ve Nath, S. (2013). Sex determination of human crania using Mastoid triangle and Opisthion-Bimastoid triangle. Journal of Forensic and Legal Medicine, 20(4), 255-259. https://doi.org/10.1016/j.jflm.2012.09.020
  • Kansu, Ş. A. (1940). Türk Antropoloji Enstitüsü Tarihçesi. Maarif Matbaası, İstanbul.
  • Kasikam, K. E., Troy Case, D., Kasikam, M., Prasitwattanaseree, S., Sinthubua, A., Singsuwan, A., Singsuwan, P., ve Mahakkanukrauh, P. (2021). Sex estimation from the cranial base in a Thai population. Australian Journal of Forensic Sciences, 53(3), 291-305. https://doi.org/10.1080/00450618.2019.1704057
  • Kemkes, A., ve Göbel, T. (2006). Metric assessment of the “mastoid triangle” for sex determination: a validation study. Journal of Forensic Sciences, 51(5), 985-989. https://doi.org/10.1111/j.1556-4029.2006.00232.x
  • Klales, A. R. (2013). Current practices in physical anthropology for sex estimation in unidentified, adult individuals. American Journal of Physical Antropology, 150(S56), 168. https://doi.org/10.1002/ajpa.22247
  • Krüger, G. C., L’Abbé, E. N., Stull, K. E., ve Kenyhercz, M. W. (2015). Sexual dimorphism in cranial morphology among modern South Africans. International Journal of Legal Medicine, 129(4), 869-875. https://doi.org/10.1007/s00414-014-1111-0
  • Langley, N. R., Meadows Jantz, L., Ousley, S. D., Jantz, R. L., ve Milner, G. (2016). Data Collection Procedures for Forensic Skeletal Material 2.0. University of Tennessee. https://fac.utk.edu/wp-content/uploads/2016/03/DCP20_webversion.pdf
  • Lucena, J. D, Freitas, F. O. R., Limeira, Í. S., Araújo Sales, T. H., Souza Sanders, J. V., Cavalcante, J. B., ve Cerqueira, G. S. (2019). Incidence of sutural bones at asterion in dry human skulls in Northeast Brazil. Acta Scientiae Anatomica, 1(3), 178-183. http://actasanatomica.com/journal/index.php/asa/article/view/48
  • Macaluso, P. J., Jr. (2010). The efficacy of sternal measurements for sex estimation in South African blacks. Forensic Science International, 202(1-3), 111.e1–111.e7. https://doi.org/10.1016/j.forsciint.2010.07.019
  • Macedo, V. C, Cabrini, R. R., ve Faig-Leite, H. (2009). Infraorbital foramen location in dry human skulls. Brazilian Journal of Morphological Sciences, 26(1), 35-38. http://www.jms.periodikos.com.br/article/587cb48c7f8c9d0d058b4733
  • Marinescu, M. C., Panaitescu, V., Rosu, M., Maru, N., ve Punga, A. (2014). Sexual dimorphism of crania in a Romanian population: Discriminant function analysis approach for sex estimation. Romanian Journal of Legal Medicine, 22(1), 21-26. https://doi.org/10.4323/rjlm.2014.21
  • Moore, M. K. (2013). Sex estimation and assessment. E. DiGangi ve M. Moore (Ed.) içinde, Research methods in human skeletal biology (s. 91-116). Academic Press. https://doi.org/10.1016/B978-0-12-385189-5.00004-2
  • Ogawa, Y., Imaizumi, K., Miyasaka, S., ve Yoshino, M. (2013). Discriminant functions for sex estimation of modern Japanese skulls. Journal of Forensic and Legal Medicine, 20(4), 234-238. https://doi.org/10.1016/j.jflm.2012.09.023
  • Paiva, L. A., ve Segre, M. (2003). Sexing the human skull through the mastoid process. Revista do Hospital das Clinicas, 58(1), 15-20. https://doi.org/10.1590/S0041-87812003000100004
  • Papaioannou, V. A., Kranioti, E. F., Joveneaux, P., Nathena, D., ve Michalodimitrakis, M. (2012). Sexual dimorphism of the scapula and the clavicle in a contemporary Greek population: applications in forensic identification. Forensic Science International, 217(1-3), 231.e1–231.e7. https://doi.org/10.1016/j.forsciint.2011.11.010
  • Peckmann, T. R., ve Fisher, B. (2018). Sex estimation from the patella in an African American population. Journal of Forensic and Legal Medicine, 54, 1-7. https://doi.org/10.1016/j.jflm.2017.12.002
  • Perini, T. A., de Oliveira, G. L., dos Santos Omellas, J., ve de Oliveira, F. P. (2005). Technical error of measurement in anthropometry. Revista Brasileira de Medicina do Esporte, 11(1), 86-90. https://doi.org/10.1590/S1517-86922005000100009
  • Rowbotham, S. K. (2016). Anthropological estimation of sex. S. Blau ve D. H. Ubelaker (Ed.) içinde, Handbook of forensic anthropology and archaeology (2. baskı, s. 261-272). Routledge, Taylor & Francis. https://doi.org/10.4324/9781315528939
  • Sağır, M., Özer, İ., ve Güleç, E. (2009). Osmanlı Dönemi kafataslarının paleopatolojik analizi. Arkeometri Sonuçları Toplantısı, 24, 65-78. http://www.kulturvarliklari.gov.tr/sempozyum_pdf/arkeometri/24_arkeometri.pdf
  • Scheuer, L. (2002). Application of osteology to forensic medicine. Clinical Anatomy, 15(4), 297-312. https://doi.org/10.1002/ca.10028
  • Sinhorini, P. A., Costa, I., Lopez-Capp, T. T., Biazevic, M., ve de Paiva, L. (2019). Comparative analysis of four morphometric methods for sex estimation: A study conducted on human skulls. Legal Medicine, 39, 29-34. https://doi.org/10.1016/j.legalmed.2019.06.001
  • Spradley, M. K., ve Jantz, R. L. (2011). Sex estimation in forensic anthropology: Skull versus postcranial elements. Journal of Forensic Sciences, 56(2), 289-296. https://doi.org/10.1111/j.1556-4029.2010.01635.x
  • Stomfai, S., Ahrens, W., Bammann, K., Kovács, É., Mårild, S., Michels, N., Moreno, L. A., Pohlabeln, H., Siani, A., Tornaritis, M., Veidebaum, T., ve Molnár, D. (2011). Intra- and inter-observer reliability in anthropometric measurements in children. International Journal of Obesity, 35(1), S45-S51. https://doi.org/10.1038/ijo.2011.34
  • Toneva, D., Nikolova, S., Harizanov, S., Georgiev, I., Zlatareva, D., Hadjidekov, V., Dandov, A., ve Lazarov, N. (2018). Sex estimation by size and shape of foramen magnum based on CT imaging. Legal Medicine, 35, 50-60. https://doi.org/10.1016/j.legalmed.2018.09.009
  • Ubelaker, D. H., ve DeGaglia, C. M. (2017). Population variation in skeletal sexual dimorphism. Forensic Science International, 278, 407.e1-407.e7. https://doi.org/10.1016/j.forsciint.2017.06.012
  • Ucerler, H., ve Govsa, F. (2006). Asterion as a surgical landmark for lateral cranial base approaches. Journal of Cranio-Maxillofacial Surgery, 34(7), 415-420. https://doi.org/10.1016/j.jcms.2006.05.003
  • Walker, P. L. (2008). Sexing skulls using discriminant function analysis of visually assessed traits. American Journal of Physical Anthropology, 136(1), 39-50. https://doi.org/10.1002/ajpa.20776
  • Weinberg, S. M., Scott, N. M., Neiswanger, K., ve Marazita, M. L. (2005). Intraobserver error associated with measurements of the hand. American Journal of Human Biology, 17(3), 368-371. https://doi.org/10.1002/ajhb.20129
  • Weisensee, K. E., ve Jantz, R. L. (2011). Secular changes in craniofacial morphology of the Portuguese using geometric morphometrics. American Journal of Physical Anthropology, 145(4), 548-559. https://doi.org/10.1002/ajpa.21531
  • Williams, B. A., ve Rogers, T. (2006). Evaluating the accuracy and precision of cranial morphological traits for sex determination. Journal of Forensic Sciences, 51(4), 729-735. https://doi.org/10.1111/j.1556-4029.2006.00177.x
  • Zeman, T., ve Beňuš, R. (2020). Initial assessment: Measurement errors and interrater reliability. Z. Obertova, A. Stewart ve C. Cattaneo (Ed.) içinde, Statistics and probability in forensic anthropology (s. 47-56). Academic Press. https://doi.org/10.1016/B978-0-12-815764-0.00009-5