İnsülin-dirençli Memeli Kalp Fonksiyon Bozukluğunda Mitokondrihedefli Antioksidan Mitotempo Uygulamasının Pozitif Etkileri

Amaç: Karbonhidrat ve/veya yağ ağırlıklı beslenme bireylerde insülin direnci ile karakterize metabolik sendrom (MetS) gelişmesine neden olmaktadır. Yaşam süresinin uzaması da toplumlarda ileri yaş grubu oranının hızla yükselmesi ile sonuçlanmakta ve yaşlanan popülasyonun önemli bir oranında ise insülin direnci gelişebilmektedir. İnsülin direnci ve kalp fonksiyonu bozukluğu arasında en azından reaktif oksijen türlerinin kontrolsüz üretimi yoluyla yakın ilişki olduğu ve bu ilişkide mitokondri bozulmasının rol oynadığı ileri sürülmektedir. Bu nedenle bu çalışmada, izole sıçan kardiyomiyositlerinde mitokondriyon-hedefli bir antioksidan uygulamasının olası pozitif etkilerinin elektrofizyolojik ve histolojik olarak incelenmesi hedeflenmiştir. Gereç ve Yöntem: Çalışmada 24 aylık Wistar türü erkek sıçanlar (yaşlı grup; 7 adet), %32 oranında sukroz-beslenmesi ile MetS-grup oluşturulan erişkin (6 aylık; 7 adet) ve standart yemle beslenen erişkin (kontrol grup; 6 aylık ve 7 adet) sıçanlar kullanılmıştır. MetS, yüksek kan şekeri, oral glikoz tolerans testi ve serum insülin seviyeleri ile doğrulandı. Sol ventrikülden enzimatik yolla hücre izole edilerek, mitokondriyonların yapısal incelemeleri, hücrelerde fonksiyonel parametreler ve adenozin trifosfat (ATP)-duyarlı K+-kanal akımları (IKATP) (patch-clamp ile) incelenmiştir. Bulgular: İnsülin direnci gelişen sıçan kardiyomiyositlerinde, mitokondride fragmantasyonun arttığı, mitokondriyon-membran-potansiyelinin depolarize olduğu ve reaktif oksijen türleri miktarının arttığı gözlenmiştir. Yaşlı-sıçan kardiyomiyositlerinde IKATP’nin deprese olduğu (p

Beneficial Effect of a Mitochondrial-targeted Antioxidant Mitotempo in Insulin-resistant Mammalian Cardiac Dysfunction

Objectives: Overfeeding with a high carbohydrate and/or high-fat diet induces metabolic syndrome (MetS) in humans, which is characterized by insulin-resistance. Long life span leads to increases in the ratio of aged humans in populations and an important percentage of the aged humans has insulin-resistance. There is a close relationship between insulin resistance and cardiac dysfunction, at least, via uncontrolled production of reactive oxygen species, while mitochondrial dysfunction plays an important role in that relation. To explore that relation, we aimed to examine the possible cardioprotective effect of a mitochondria-targeting antioxidant by using electrophysiological and histological examinations. Materials and Methods: We used Wistar male rats in three groups as; those that were 24-month-old (elderly group; n=7), adults fed with 32% sucrose diet (MetS-group; 6-month-old; n=7), and adults fed with standard food (Control group; 6-month-old, n=7). MetS was confirmed with high blood glucose, oral glucose tolerance test, and serum insulin levels. Cardiomyocytes either treated with an antioxidant MitoTEMPO were isolated from the left ventricle by enzymatic method, and the ultrastructure and function of mitochondria as well as adenosine triphosphate (ATP)- dependent K+-channel currents (IKATP; patch-clamp technique) were evaluated. Results: There were marked increases in the fragmentation of mitochondria, depolarization in the membrane potential, and the production of ROS in insulin-resistant cardiomyocytes. There were significant decreases in IKATP and ATP level (p

___

  • 1. Durak A, Bitirim CV, Turan B. Titin and CK2α are New Intracellular Targets in Acute Insulin Application-Associated Benefits on Electrophysiological Parameters of Left Ventricular Cardiomyocytes From Insulin-Resistant Metabolic Syndrome Rats. Cardiovasc Drugs Ther. 2020;34:487-501.
  • 2. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335-344.
  • 3. Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26-33.
  • 4. Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res. 2016;118:1593-1611.
  • 5. Murphy MP. Understanding and preventing mitochondrial oxidative damage. Biochem Soc Trans. 2016;44:1219-1226.
  • 6. Nguyen BY, Ruiz-Velasco A, Bui T, et al. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol. 2019;176:4302-4318.
  • 7. Bhashyam S, Parikh P, Bolukoglu H, et al. Aging is associated with myocardial insulin resistance and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 2007;293:3063-3071.
  • 8. McMillin JB, Taffet GE, Taegtmeyer H, et al. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc Res. 1993;27:2222-2228.
  • 9. Olgar Y, Degirmenci S, Durak A, et al. Aging related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Exp Gerontol. 2018;110:172-181.
  • 10. Durak A, Olgar Y, Degirmenci S, et al. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol. 2018;17:144.
  • 11. Das RR, Mangaraj M, Panigrahi SK, et al. Metabolic Syndrome and Insulin Resistance in School children From a Developing Country. Front Nutr. 2020;7:31.
  • 12. Belhayara MI, Mellouk Z, Hamdaoui MS, et al. The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria. Nutrients. 2020;12:727.
  • 13. Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14.
  • 14. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1066-1077.
  • 15. Durak A, Olgar Y, Tuncay E, et al. Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Can J Physiol Pharmacol. 2017;95:1335-1342.
  • 16. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003;107:346-354.
  • 17. Triposkiadis F, Xanthopoulos A, Butler J. Cardiovascular Aging and Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;74:804- 813.
  • 18. Okatan EN, Tuncay E, Hafez G, et al. Profiling of cardiac β-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2015;93:517-525.
  • 19. Mitchell T, Darley-Usmar V. Metabolic syndrome and mitochondrial dysfunction: insights from pre-clinical studies with a mitochondrially targeted antioxidant. Free Radic Biol Med. 2012;52:838-840.
  • 20. Olgar Y, Billur D, Tuncay E, et al. MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol. 2020;136:110961.
  • 21. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91:10771-10778.
  • 22. Olgar Y, Tuncay E, Degirmenci S, et al. Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmicreticulum Ca2+ homeostasis and promotes cardiac dysfunction. J Cell Mol Med. 2020;24:8567-8578.
  • 23. Ernster L, Forsmark P, Nordenbrand K. The mode of action of lipidsoluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Biofactors. 1992;3:241-248.
  • 24. Trnka J, Blaikie FH, Smith RA, et al. A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med. 2008;44:1406-1419.
  • 25. Turan B, Fliss H, Désilets M. Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Physiol. 1997;272:2095- 2106.
  • 26. Pfeiffer ER, Wright AT, Edwards AG, et al. Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol. 2014;76:265-274.
  • 27. Degirmenci S, Olgar Y, Durak A, et al. Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. J Trace Elem Med Biol. 2018;48:202-212.
  • 28. Kumar AA, Kelly DP, Chirinos JA. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation. 2019;139:1435-1450.
  • 29. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007;356:1140-1151.
  • 30. Saotome M, Ikoma T, Hasan P, et al. Cardiac Insulin Resistance in Heart Failure : The Role of Mitochondrial Dynamics.Int J Mol Sci. 2019;20:3552.
  • 31. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients. 2019;11:2090.
  • 32. Ma J, Wang Y, Zheng D, et al. Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res. 2013;97:77-87.
  • 33. Vendrov AE, Vendrov KC, Smith A, et al. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease. Antioxid Redox Signal. 2015;23:1389-1409.
  • 34. Frieden M, James D, Castelbou C, et al. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem. 2004;279:22704-22714.
  • 35. Galloway CA, Yoon Y. Mitochondrial dynamics in diabetic cardioamyopathy. Antioxid Redox Signal. 2015;22:1545-1562.
  • 36. Ruiz-Meana M, Bou-Teen D, Ferdinandy P, et al. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res. 2020;116:1835-1849.
  • 37. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143-164.
  • 38. Rochlani Y, Pothineni NV, Kovelamudi S, et al. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11:215-225.
  • 39. Bao L, Taskin E, Foster M, et al. Alterations in ventricular K(ATP) channel properties during aging. Aging Cell. 2013;12:167-176.
Ankara Üniversitesi Tıp Fakültesi Mecmuası-Cover
  • Başlangıç: 1947
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Sural Sinir İletim Çalışmalarında Yakın Sinir Yönteminin Özgüllüğü

Mustafa Aykut KURAL, Hatice TANKİSİ

Çocuk Hastalarda Evde İnvaziv Mekanik Ventilasyon Uygulamaları: Güncel Rehberler ve Yol Haritası

Yaşar BİLDİRİCİ

Masseter Kas Kalınlığı ve Yutma Fonksiyonlarını Tahmin Etmede Çene Isırma Kuvvetinin Yeri

Gözde Şengül AYÇİÇEK, Güneş ARIK, Muhammet Cemal KIZILARSLANOĞLU, Büşra CAN, İhsan YIKILGAN, Mahmut DUYMUŞ, Zekeriya ÜLGER

COVID-19 Pandemisi Sırasında Uzaktan Kontrollü Aletli Periton Diyalizi ile Sürekli Ayaktan Periton Diyalizi Uygulayan Hastaların Karşılaştırılması

Rezzan Eren SADİOĞLU, Merve AKTAR, Gülden BOLAT ÇELİK, Elif AÇIKGÖZ, Şayeste AKKAN EREN, Kenan ATEŞ

Erken Evre Kronik Lenfositik Lösemide Tiroid Antikorları ve İnsülin Direnci Sıklığının Araştırılması

Didar YANARDAĞ AÇIK

Yaşa Bağlı Kalp Fonksiyon Değişiklikleri ve miRNA’lar

Yusuf OLGAR, Deniz BİLLUR, Belma TURAN

Nöromusküler Monitorizasyon Rehberliğinin Olmadığı Hastalarda, Sugammadex Ekstübasyon için Güvenilir bir Seçenek Midir? Randomize Klinik Çalışma

Çiğdem YILDIRIM GÜÇLÜ, Zekeriyya ALANOĞLU, Başak Ceyda MEÇO, Menekşe ÖZÇELİK, Sanem ÇAKAR TURHAN, Barış ADAKLI, Neslihan ALKIŞ

Aktif Psöratik Artrit Hastalarının Secukinumab Tedavisine Yanıtlarının Değerlendirilmesi- Tek Merkez Deneyimi

Ayşe Bahar KELEŞOĞLU DİNÇER, Serdar SEZER, Emine Gözde AYDEMİR GÜLÖKSÜZ, Müçteba Enes YAYLA, Murat TORGUTALP, Emine USLU YURTERİ, İlyas Ercan OKATAN, Didem ŞAHİN EROĞLU, Mehmet Levent YÜKSEL, Tahsin Murat TURGAY, Gülay KINIKLI, Aşkın ATEŞ

Ankara Üniversitesi Tıp Fakültesi Dönem 3 Öğrencilerinin Aile İzlem Çalışması ile İlgili Değerlendirmeleri

Halit Emin ALICILAR, Meltem ÇÖL, Mine Esin OCAKTAN, Deniz ÇALIŞKAN

İleostomi Kapamanın Zamanlaması İleostomi Varlığında ve Kapanması Sonrasında Komplikasyonların Gelişimini Etkiler Mi? Tek Bir Kolorektal Merkeze Ait Retrospektif Bir Çalışma

Mehmet Arif USTA, Arif Burak ÇEKİÇ