Diyabetik Kardiyomiyopati ve Prolil Hidroksilazlar

Diyabetik kardiyomiyopati (DKMP), diyabet hastalarında koroner arter hastalığı ve hipertansiyondan bağımsız olarak geli?en ventriküler disfonksiyon olarak ifade edilmektedir. Kalp dokusunda görülen, intersitisyal fibrozis, miyosit hipertrofisi ve artmı? kontraktil protein glikozilasyonu DKMP'de görülen kardiyak patolojilere örnek te?kil eder. Sistolik disfonksiyon DKMP'de genellikle geç ve belirgin diyastolik disfonksiyonu olan hastalarda görülen bir bulgudur. DKMP'nin birçok ba?lıktan olu?an oldukça karma?ık bir patofizyolojisi vardır. Bu derlemede prolil hidroksilazların da içerisinde bulunduğu HIF-VEGF-anjiyogenez aksındaki bozulmalar üzerinde yoğunla?ılmı?tır. Diyabette hipoksiye verilen HIF yanıtının bozulduğu ve bu deği?imin DKMP'nin patogenezinde önemli bir yer tuttuğu bilinmektedir. Prolil hidroksilazlar (PHD'ler), moleküler oksijeni kofaktör olarak kullanan, oksijen varlığında HIF-? (hipoksi ile indüklenen faktör-?) altbirimini degrade eden enzim yapılı moleküllerdir. Hücresel oksijen homeostazında ve hipoksiye verilen HIF cevabında önemli bir yere sahiptirler. Hipoksik ko?ullarda PHD enzimi inaktif hale gelir ve degradasyondan kurtulan HIF-1?, ? alt birimi ile birle?erek HIF-1 molekü- lünü olu?turur. Bu olaya "HIF stabilizasyonu" adı verilir. Stabilize olan HIF-1 molekülü hücredeki birçok proteinin transkripsiyonunu modifiye eder. HIF'in alt hedeflerinin aktivasyonu hücrenin enerji ve oksijen tüketimini azaltır ve hücreye oksijen arzını arttırır, böylece hipoksik sürecin en az hasarla atlatılması sağlanır. HIF aktivasyonu sonucu açığa çıkan genomik profilin DKMP'de koruyucu etkileri olduğu bilinmektedir. HIF sistemini aktive etmek için HIF overekspresyonu yapılan genetik modeller, hipoksi uygulaması, PHD inhibitörleri ve PHD geninin susturulması gibi yöntemler kullanılmaktadır. Literatürde diyabetin PHDlere olan etkisi ile ilgili az sayıda çalı?ma bulunmaktadır. Diyabette PHD merkezli ara?tırmaların artması diyabette önleyici ve tedavi edici stratejilerin geli?tirilmesi açısından önemli bilgiler üretilmesine açık bir alandır.

Diabetic Cardiomyopathy and Prolyl Hydroxylases

Diabetic cardiomyopaty (DCMP) is described as ventricular dysfunction seen in diabetic patientswhich manifests itself without any coronary artery disease and hypertension. One may observe intersititialfibrosis, myocyte hypertrophy and contractile protein glycation in DCMP. Diastolic dysfunctionis the earliest and most of the time only symptom of DCMP. Generally systolic dysfunction is a latesymptom which is seen in patients who have significant diastolic dysfunction.DCMP has a very complex pathophysiology which can be indexed in many titles. We focused on HIFVEGF-Angiogenesisaxis which contains prolyl hydroxilases. In diabetes HIF response to hypoxia isblunted and it is known that this alteration is an important contributor to DCMP prognosis.Prolyl hydroxilases are enzymatic molecules (PHDs) which, uses molecular oxygen as cofactor and ifoxygen is abundant they degrade HIF-α (hypoxia induced factor-α) subunit. They have an importantrole in cellular oxygen homeostasis and HIF response to hypoxia. In hypoxic conditions, PHD becomesinactive that saves HIF-1α from degradation and HIF-1α unites with β subunit to form HIF-1 molecule.This phenomenon is named as “HIF stabilisation”. Stabilised HIF-1 molecule modifies lots of protein’stranscription rate in the cell. Activation of HIF’s downstream targets, lowers the energy and oxygenconsumption and increases the delivery of oxygen to the cell which protects the cell from hypoxicdamage.The genomic profile generated with HIF activation has cardioprotective effect in DCMP. HIF overexpressinggenetic models, hypoxia application, PHD inhibitors and PHD silencing methods is usedto activate HIF system.There are limited number of studies in literature about the effect of diabetes on PHDs. Increment ofPHD-based research in diabetes may help the production of valuable knowledge about preventiveand therapeutical strategies in diabetes.

___

  • 1. Melmed S, Polonsky KS, Larsen PR, et al. William's Textbook of Endocrinology, 13th edition., Phidelphia: Elsevier/Saunders. 2016; 1371–1435.
  • 2. Lambert P, Bingley PJ. What is Type 1 Diabetes? Medicine 2002; 30: 1–5.
  • 3. IDF (International Diabetes Federation). International Diabetes Atlas 2015; ISBN: 978-2-930229-81-2.
  • 4. Murarka S, Mohaved MR. Diabetic Cardiomyopathy. Journal of Cardiac Failure 2010: 16(12): 971-979.
  • 5. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602.
  • 6. Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the Strong Heart Study. Circulation 2000; 101: 2271-2276.
  • 7. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34: 29-34.
  • 8. Das AK, Das JP, Chandrasekar S. Specific heart muscle disease in diabetes mellitus functional structural correlation. Int J Cardiol 1987; 17: 299-302.
  • 9. Nunoda S, Genda A, Sugihara N, et al. Quantitative approach to the histopathology of the biopsied right venticlular myocardium in patients with diabetes mellitus. Heart Vessels 1985; 1: 43-47.
  • 10. Syrovy I, Hodny Z. Nonenzymatic glycosylation of myosin: effects of diabetes and ageing. Gen Physiol Biophys 1992; 11: 301-307.
  • 11. Hayat SA, Patel B, Khattar RS, et al. Diabetic cardiomyopathy: mechanisms diagnosis and treatment. Clinical Science 2004; 107: 539-557.
  • 12. Regan TJ, Lyons MM, Ahmed SS, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977; 60: 884-899.
  • 13. Mildenberger RR Bar-Shlomo B, Druck MN, et al. Clinically unrecognized dysfunction in young diabetic patients. J Am Coll Cardiol 1984; 4: 234-238.
  • 14. Yılmaz S, Canpolat U, Aydoğdu S, et al. Diabetic Cardiomyopathy; Summary of 41 Years. Korean Circ J 2015; 45(4):266-272.
  • 15. Trachanas K, Sideris S, Aggeli C, et al. Diabetic Cardiomyopathy: From Pathophysiology to Treatment. Hellenic J Cardiol 2014; 55: 411-421.
  • 16. Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology & Therapeutics 2014; 142: 375–415.
  • 17. Joffe II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced, non–insulin-dependent diabetic rat. J Am Coll Cardio 1999; 34: 2111-2119.
  • 18. Kanagy NL. Vascular effects of intermittent hypoxia. ILAR J 2009; 50(3): 282-288.
  • 19. Hoit BD, Castro C, Bultron G, et al. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. J Card Fail 1999; 5: 324-333.
  • 20. Lahaye SLD, Delamarche AG, Malardé L, et al. Intense exercise training induces adaptation in expression and responsiveness of cardiac β-adrenoceptors in diabetic rats. Cardiovascular Diabetology 2010; 9: 72-81.
  • 21. Yu J, Fei J, Azad J, et al. Myocardial Protection by Salvia miltiorrhiza Injection in Streptozotocin induced Diabetic Rats through Attenuation of Expression of Thrombospondin-1 and Transforming Growth Factor-β1. The Journal Of International Medical Research 2012; 40: 1016- 1024.
  • 22. Cao J, Vecoli C, Neglia D, et al. CobaltProtoporphyrin Improves Heart Function by Blunting Oxidative Stress and Restoring NO Synthase Equilibrium in an Animal Model of Experimental Diabetes. Front Physiol 2012; 3: 1-9.
  • 23. Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 2011; 54: 1946–1956.
  • 24. Catrina SB. Impaired hypoxia-inducible factor (HIF) regulation by hyperglycemia. J Mol Med 2014; 92: 1025–1034.
  • 25. Xiao H, Gu Z, Wang G, et al. The Possible Mechanisms Underlying the Impairment of HIF-1α Pathway Signaling in Hyperglycemia and the Beneficial Effects of Certain Therapies. Int J Med Sci 2013; 10: 1412- 1421.
  • 26. Ceradini DJ, Yao D, Grogan RH et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 2008; 283:10930–10938.
  • 27. Thangarajah H, Yao D, Chang EI et al. The molecular basis for impaired hypoxiainduced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA 2009; 106:13505–13510.
  • 28. Bento CF, Fernandes R, Ramalho J et al. The chaperonedependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. PLoS ONE 2010; 5:e15062
  • 29. Kozhukhar AV, Yasinska IM, Sumbayev VV. Nitric oxide inhibits HIF-1 alpha protein accumulation under hypoxic conditions: implication of 2-oxoglutarate and iron. Biochimie 2006; 88: 411–418.
  • 30. Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008; 105:19426- 19431.
  • 31. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447–5454.
  • 32. Semenza GL, Wang GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268(29): 21513-8.
  • 33. Jiang Bh, Semenza Gl, Bauer C, et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: 1172–1180.
  • 34. Ivan M, Kondo K, Yang H, et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464– 468.
  • 67. Shizukuda Y, Mallet Rt, Lee SC, et al. Hypoxic preconditioning of ischaemic canine myocardium. Cardiovasc Res 1992; 26(5): 534–542.
  • 68. Verges S, Chacaroun S, Ribout-Godin D, et al. Hypoxic conditioning as a new therapeutic modality. Front Pediatr 2015; 3(58): 1-14.
  • 69. Faramoushi M, Sasan RA, Sarraf VS, et al. Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude. J Cardiovasc Thorac Res 2016; 8(1): 26-33.
  • 70. Akat F. Deneysel Tip I Diyabette Aralıklı Hipoksinin Sol Ventrikül Fonksiyonları Üzerine Etkisinin İncelenmesi. Danışman: Prof.Dr. Hakan FIÇICILAR. 2016; 10132926 nolu Fizyoloji Doktora Tezi.
  • 71. Xi L, Taher M, Yin C, et al. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 2004; 287: 2369–2375.
  • 72. Ockaili R, Natarajan R, Salloum F, et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 2005; 289: 542–548.
  • 73. Bao W, Qin P, Needle S, et al. Chronic inhibition of hypoxia-inducible factor (hif) prolyl 4-hydroxylase improves ventricular performance, remodeling and vascularity following myocardial infarction in the rat. J Cardiovasc Pharmacol 2010; 56(2): 147- 155.
  • 74. Tan T, Luciano JA, Scholz PM, et al. Hypoxia inducible factor-1 improves the actions of positive inotropic agents in stunned cardiac myocytes. Clin Exp Pharmacol Physiol 2009; 36: 904–11.
  • 75. Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 2006; 98: 133–40.
  • 76. Thirunavukkarasu M, Selvaraju V, Dunna NR, et al. Simvastatin treatment inhibits hypoxia inducible factor 1-alpha-(HIF1alpha)-prolyl-4- hydroxylase 3 (PHD-3) and increases angiogenesis after myocardial infarction in streptozotocin-induced diabetic rat. International Journal of Cardiology 2013; 168: 2474–2480.
  • 77. Xia Y, Gong L, Liu H, et al. Inhibition of prolyl hydroxylase 3 ameliorates cardiac dysfunction in diabetic cardiomyopathy. Molecular and Cellular Endocrinology 2015; 403: 21–29.
Ankara Üniversitesi Tıp Fakültesi Mecmuası-Cover
  • Başlangıç: 1947
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Intravenöz Immunoglobulin Tedavisi Sonrasi Santral Retinal Ven Oklüzyonu Gelisen Bir Pemfigus Vulgaris Hastası

Müge Pınar ÖZDAL, Aysun DOĞAN SANAL, Müzeyyen GÖNÜL, Damla ATACAN

Eriskinde Sturge Weber Sendromu Kranial MRG ve BT Bulguları İle Üç Olgu Sunumu

Semra DURAN, Bülent SAKMAN, Deniz Sözmen CILIZ, Gözde TUFAN, Mehtap ÇAVUSOĞLU

Trakeostomiye sekonder Çok Nadir Bir Komplikasyon Olan Nekrotizan Fasiit Gelișen Larinks Kanserli Hastada FDG PET/BT’nin Rolü

Gonca BURAL, Ebru BAYAR

Diyabetik Kardiyomiyopati ve Prolil Hidroksilazlar

Hakan FIÇICILAR, Fırat AKAT

Spontan İntrakraniyal Hipotansiyon: Kranial ve Spinal MRG Bulguları

Semra DURAN, Bülent SAKMAN, Arzu ÖZSOY, Deniz Sözmen CILIZ, Hatice Gül Hatipoğlu ÇETİN, Mehtap ÇAVUSOĞLU

Ani İsitme Kayıplı Hastalarda Prognozu Belirlemede Kalorik Testin Değeri Var mı?

Süha BETON, Muharrem GERÇEKER

Koroner By-pass Cerrahisinde Alternatif Arteryel Greft Olarak A. Thoracodorsalis ve A. Thoracica Lateralis: Morfolojik Bir Çalısma

Handan ANKARALI, Necat YILMAZ, Deniz UZMANSEL, Ayhan CÖMERT, Zeliha KURTOĞLU, Mustafa AKTEKİN

Çocuklarda Akciğer Kist Hidatiğinde Torakoskopik Kistostomi

Meltem BİNGÖL-KOLOĞLU, Ufuk ATES, Aydın YAĞMURLU, Ergun ERGÜN, Gülnur GÖLLÜ, Hüseyin DİNDAR, A Murat ÇAKMAK

Akut Miyeloid Lösemide Kromozomal Anomaliler: Tek Merkezden 417 Olgunun Sitogenetik Sonuçları

Nüket YÜRÜRKUTLAY

Sağlıklı Bireylerde ve Otizmde Otistik Belirtilerin Sürekliliği

Canan KALAYCIOĞLU, Simge AYKAN