SAPONİNLER VE DİABETES MELLİTUS ÜZERİNE POTANSİYEL ETKİLERİ

Hiperglisemi ile seyreden heterojen bir hastalık olan Diyabetes Mellitus, küresel düzeyde önemli bir sağlık sorunudur. Kronik hiperglisemi, çeşitli organların geri dönüşümsüz hasarına ve disfonksiyonuna neden olarak sağlık harcamalarını artırmakta ve yaşam kalitesini azaltmaktadır. Günümüzde diyabet tedavisinde kullanılan mevcut sentetik oral anti-diyabetik ilaçların yanında, anti-hiperglisemik aktiviteye sahip fitokimyasalların bitkilerden izolasyonu ile yan etkisi daha az alternatif ajanların bulunmasına yönelik ilgi artmıştır. Bu fitokimyasallardan biri olan saponinlerin; anti-tümör, anti-mikrobiyal ve anti-inflamatuar gibi çeşitli potansiyel terapötik etkilerinin yanında anti-hiperglisemik etkiye de sahip oldukları ifade edilmektedir. Bu makalede kanıta dayalı veriler ışığında saponinlerin antidiyabetik etkileri tartışılacaktır.

SAPONINS AND POTENTIAL EFFECTS ON DIABETES MELLITUS

Diabetes mellitus, a heterogeneous disorder characterized by hyperglycaemia, is an important global health problem. Chronic hyperglycemia causes irreversible damage and dysfunction of various organs, thereby increasing health expenditure and reducing quality of life. In recent years, besides the existing synthetic oral antidiabetic drugs used in the treatment of diabetes, there is an increased interest in the availability of alternative agents having less side effects and obtained by isolation of phytochemicals with antihyperglycemic activity from plants. Saponins, one of these phytochemicals, have anti-hyperglycemic activity as well as various potential therapeutic effects such as anti-tumor, anti-microbial and antiinflammatory. In this article, the antidiabetic effects of saponins will be discussed according to evidence based data.

___

  • Alberti, K. G. M. M., Zimmet, P. F. 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine; 15(7):539-553.
  • Augustin, J. M., Kuzina, V., Andersen, S. B., Bak, S. 2011. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry; 72(6):435-457.
  • Baumann, E., Stoya, G., Völkner, A., Richter, W., Lemke, C., Linss, W. 2000. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem; 102(1):21-35.
  • Bordbar, S., Anwar, F., Saari, N. 2011. High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs; 9(10):1761-1805.
  • Coman, C., Rugină, O.D., Socaciu, C. 2012. Plants and natural compounds with antidiabetic action. Not. Bot. Horti. Agrobo; 40(1):314–325.
  • Das, T. K., Banerjee, D., Chakraborty, D., Pakhira, M. C., Shrivastava, B., Kuhad, R. C. 2012. Saponin: Role in Animal system. Veterinary World; 5(4):248-254.
  • Deng, Y., He, K., Ye, X., Chen, X., Huang, J., Li, X., Yuan, L., Jin, Y., Jin, Q., Li, P. 2012. Saponin rich fractions from Polygonatum odoratum (Mill.) Druce with more potential hypoglycemic effects. J Ethnopharmacol; 141(1):228-233.
  • Diwan, F. H., Abdel Hassan, I. A., Mohammed, S. T. 2000. Effect of saponin on mortality and histopathological changes in mice. East Mediterr Health J; 6(2-3):345-351.
  • D'Mello, J. F., Duffus, C. M., Duffus, J. H. 1991. Toxic substances in crop plants. Woodhead Publishing.
  • El Barky, A. R., Hussein, S. A., Alm-Eldeen, A. A., Hafez, Y. A., Mohamed, T. M. 2016. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother; 84:1472-1487.
  • El Barky, A. R., Hussein, S. A., Alm-Eldeen, A. A., Hafez, Y. A., Mohamed, T. M. 2017. Saponins and their potential role in diabetes mellitus. Diabetes Manag; 7(1):148-158.
  • Elekofehinti, O. O., Kamdem, J. P., Kade, I. J., Rocha, J. B. T., Adanlawo, I. G. 2013. Hypoglycemic, antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats. S Afr J Bot; 88:56-61.
  • Faizal, A., Geelen, D. 2013. Saponins and their role in biological processes in plants. Phytochem Rev; 12(4):877-893.
  • Fiore, C., Eisenhut, M., Ragazzi, E., Zanchin, G., Armanini, D. 2005. A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol; 99(3):317-324.
  • Francis, G., Kerem, Z., Makkar, H. P., Becker, K. 2002. The biological action of saponins in animal systems: a review. Br J Nutr; 88(6):587-605.
  • Ginzberg, I., Tokuhisa, J. G., Veilleux, R. E. 2009. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res; 52(1):1-15.
  • Güçlü-Üstündağ, Ö., Mazza, G. 2007. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr; 47(3):231-258.
  • Han, C., Hui, Q., Wang, Y. 2008. Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems. Nat Prod Res; 22(13):1112-1119.
  • Haralampidis, K., Trojanowska, M., Osbourn, A. E. 2002. Biosynthesis of triterpenoid saponins in plants, History and Trends in Bioprocessing and Biotransformation pp. 31-49, Springer, Berlin: Heidelberg.
  • IDF 2018. Diabetes Atlas 8th Edition, https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.html, (Erişim Tarihi: 25.03.2018).
  • Jang, Y. J., Kim, J. K., Lee, M. S., Ham, I. H., Whang, W. K., Kim, K. H., Kim, H. J. 2001. Hypoglycemic and hypolipidemic effects of crude saponin fractions from Panax ginseng and Gynostemma pentaphyllum. Yakhak Hoechi; 45(5):545-556.
  • Kawahito, S., Kitahata, H., Oshita, S. 2009. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol; 15(33):4137–4142.
  • Kim, S.H., Hyun, S.H., Choung, S.Y. 2006. Antidiabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol; 104(1–2):119–123.
  • Lalitha, T., Vishwanatha, S., Venkataraman, L. V. 1990. Oral toxicity of Madhuca butyracea Macb. saponins to albino rats. Indian J Exp Biol; 28(7):642-647.
  • Lee, K. T., Jung, T. W., Lee, H. J., Kim, S. G., Shin, Y. S., Whang, W. K. 2011a. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res; 34(7):1201-1208.
  • Lee, W. H., Gam, C. O., Ku, S. K., Choi, S. H. 2011. Single oral dose toxicity test of platycodin D, a saponin from platycodin radix in mice. Toxicol Res; 27(4):217-224.
  • Li, M., Qu, W., Wang, Y., Wan, H., Tian, C. 2002. Hypoglycemic effect of saponin from Tribulus terrestris. Zhong Yao Cai; 25(6):420-422.
  • Lu, F. R., Shen, L., Qin, Y., Gao, L., Li, H., Dai, Y. 2008. Clinical observation on trigonella foenum-graecum L. total saponins in combination with sulfonylureas in the treatment of type 2 diabetes mellitus. Chin J Integr Med; 14(1):56-60.
  • Lu, J. M., Wang, Y. F., Yan, H. L., Lin, P., Gu, W., Yu, J. 2016. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J Ethnopharmacol; 179:291-300.
  • Metwally, N. S., Mohamed, A. M., ELSharabasy, F. S. 2012. Chemical constituents of the Egyptian Plant Anabasis articulata (Forssk) Moq and its antidiabetic effects on rats with streptozotocin-induced diabetic hepatopathy. J App Pharm Sci; 2(4):54-65.
  • Mizui, F., Kasai, R., Ohtani, K., Tanaka, O. 1990. Saponins from bran of quinoa, Chenopodium quinoa Willd. II. Chem Pharm Bull; 38(2):375-377.
  • Moses, T., Papadopoulou, K. K., Osbourn, A. 2014. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol; 49(6):439-462.
  • Moses, T., Pollier, J., Thevelein, J. M., Goossens, A. 2013. Bioengineering of plant (tri) terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol; 200(1):27-43.
  • Nafiu, M. O., Ashafa, A. O. T. 2017. Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes In vitro. Pharmacogn Mag; 13(52):576.
  • Netala, V. R., Ghosh, S. B., Bobbu, P., Anitha, D., Tartte, V. 2015. Triterpenoid saponins: a review on biosynthesis, applications and mechanism of their action. Int J Pharm Pharm Sci; 7(1):24-28.
  • Oishi, Y., Sakamoto, T., Udagawa, H., Taniguchi, H., Kobayashi-Hattori, K., Ozawa, Y., Takita, T. 2007. Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction. Biosci Biotechnol Biochem; 71(3):735-740.
  • Otto-Buczkowska, E., Jarosz-Chobot, P. 2001. Lipid metabolism. I. Role of insulin in lipid metabolism. Pol Merkur Lekarski; 10(57):180-184.
  • Price, K. R., Johnson, I. T., Fenwick, G. R., Malinow, M. R. 1987. The chemistry and biological significance of saponins in foods and feedingstuffs. Crit Rev Food Sci Nutr; 26(1):27-135.
  • Qin, Y., Wu, X., Huang, W., Gong, G., Li, D., He, Y., Zhao, Y. 2009. Acute toxicity and sub-chronic toxicity of steroidal saponins from Dioscorea zingiberensis CH Wright in rodents. J Ethnopharmacol; 126(3):543-550.
  • Recchia, J., Lurantos, M. H., Amsden, J. A., Storey, J., Kensil, C. R. 1995. A semisynthetic Quillaja saponin as a drug delivery agent for aminoglycoside antibiotics. Pharm Res; 12(12):1917-1923.
  • Riguera, R. 1997. Isolating bioactive compounds from marine organisms. J Mar Biotechnol; 5:187-193.
  • Saliu, J. A., Fapohunda, O. 2016. The antihyperglycemic, hepatoprotective and renoprotective potentials of the aqueous extract of Costuslucanusianus on streptozotocin–induced diabetic rats. JALSI; 4(2):1–10.
  • Satman, I., Imamoglu, S., Yilmaz, C. 2012. A patient-based study on the adherence of physicians to guidelines for the management of type 2 diabetes in Turkey. Diabetes Res Clin Pract; 98(1):75-82.
  • Satman, I., Omer, B., Tutuncu, Y., Kalaca, S., Gedik, S., Dinccag, N., Karsidag, K., Genc, S., Telci, A., Canbaz, B., Turker, F., Yilmaz, T., Cakir, B. 2013. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol; 28(2):169-180.
  • Sauvaire, Y., Baissac, Y., Leconte, O., Petit, P., Ribes, G. 1996. Steroid saponins from fenugreek and some of their biological properties. Adv Exp Med Biol; 405:37-46.
  • Song, Y. B., An, Y. R., Kim, S. J., Park, H. W., Jung, J. W., Kyung, J. S., Hwang, S. Y., Kim, Y. S. 2012. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric; 92(2):388-396.
  • Sparg, S., Light, M. E., Van Staden, J. 2004. Biological activities and distribution of plant saponins. J Ethnopharmacol; 94(2-3):219-243.
  • Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., Holman, R. R. 2000. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ; 321(7258):405-412.
  • Sugden, M., Holness, M. 2011. Pathophysiology of diabetic dyslipidemia: implications for atherogenesis and treatment. Clin Lipidol; 6(4):401-411.
  • Thakur, M., Melzig, M. F., Fuchs, H., Weng, A. 2011. Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics; 1:19-29.
  • Thimmappa, R., Geisler, K., Louveau, T., O'Maille, P., Osbourn, A. 2014. Triterpene biosynthesis in plants. Annu Rev Plant Biol; 65:225-257.
  • Thompson, L. U. 1993. Potential health benefits and problems associated with antinutrients in foods. Food Res Int; 26(2):131-149.
  • Vishwakarma, R. K., Patel, K., Sonawane, P., Kumari, U., Singh, S., Abbassi, S. J., Agrawal, D. C., Tsay, H., Khan, B. M. 2015. Squalene synthase gene from medicinal herb Bacopa monniera: molecular characterization, differential expression, comparative modeling, and docking studies. Plant Mol Biol Report; 33(6):1675-1685.
  • Wang, T., Choi, R. C., Li, J., Bi, C. W., Ran, W., Chen, X., Dong, T. T., Bi, K., Tsim, K. W. 2012. Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. J Ethnopharmacol; 139(1):214-220.
  • Williams, J. R., Gong, H. 2007. Biological Activities and Syntheses of Steroidal Saponins: the Shark-Repelling Pavoninins. Lipids; 42(1):77-86.
  • Wina, E., Muetzel, S., Becker, K. 2005. The impact of saponins or saponin-containing plant materials on ruminant production A Review. J Agric Food Chem; 53(21):8093-8105.
  • Xu, R., Fazio, G. C., Matsuda, S. P. 2004. On the origins of triterpenoid skeletal diversity. Phytochemistry; 65(3):261-291.
  • Xue, Z., Duan, L., Liu, D., Guo, J., Ge, S., Dicks, J., ÓMáille, P., Osbourn, A., Qi, X. 2012. Divergent evolution of oxidosqualene cyclases in plants. New Phytol; 193(4):1022-1038.
  • Yin, X., Zhang, Y., Wu, H., Zhu, X., Zheng, X., Jiang, S., Zhuo, H., Shen, J., Li, L., Qiu, J. 2004. Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats. J Pharmacol Sci; 95(2):256-266.
  • Yin, X., Zhang, Y., Yu, J., Zhang, P., Shen, J., Qiu, J., Wu, H., Zhu, X. 2006. The antioxidative effects of astragalus saponin I protect against development of early diabetic nephropathy J Pharmacol Sci; 101(2):166-173.
  • Yoshiki, Y., Kudou, S., OKuBo, K. 1998. Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci Biotechnol Biochem; 62(12):2291-2299.
  • Zhang, Y., Lu, S., Liu, Y. Y. 2007. Effect of panax quinquefolius saponin on insulin sensitivity in patients of coronary heart disease with blood glucose abnormality. Zhongguo Zhong Xi Yi Jie He Za Zhi; 27(12):1066-1069.
  • Zhao, H. L., Sim, J. S., Shim, S. H., Ha, Y. W., Kang, S. S., Kim, Y. S. 2005. Antiobese and hypolipidemic effects of platycodin saponins in diet-induced obese rats: evidences for lipase inhibition and calorie intake restriction. Int J Obes (Lond); 29(8):983-990.
  • Zheng, T., Shu, G., Yang, Z., Mo, S., Zhao, Y., Mei, Z. 2012. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats. J Ethnopharmacol; 139(3):814-821.