Besinlerdeki Bazı Biyoaktif Bileşiklerin Anti-Diyabetik Etkinliği
Diyabet hiperglisemi ile karakterize, kronik ve giderek artan bir küresel sağlık sorunudur. Diyabet ilerleyen yıllarda komplikasyonlarda, prevelansında ve sağlık harcamalarında artış olması öngörülen bir hastalıktır. Diyabetle mücadele edecek hasta sayısının 2030’da 643 milyona ve 2045’te 783 milyona çıkacağı tahmin edilmekteyken diyabetin son 15 yılda %316’lık bir artışla en az 966 milyar dolarlık sağlık harcamasına neden olduğu bildirilmektedir. Günümüzde diyabet yönetimi antihiperglisemik ilaçlar (metformin, sülfonilüre türevleri vb.) ve insülin tedavisi ile yapılmaktadır. İlaçların yüksek maliyetli ve çeşitli yan etkiler oluşturması (hipoglisemi, şişkinlik, ishal, ağırlık artışı, halsizlik vb.) araştırmacıları farklı tedavi yöntemleri geliştirmeye yöneltmiştir. Bu bağlamda çalışmalar son yıllarda geleneksel insülin ve anti-diyabetik ilaç tedavilerinin yanında besin ögesi olmayan biyoaktif diyetsel bileşenlerin diyabet patobiyolojisindeki etkilerini araştırma konusunda hız kazanmıştır. Besinlerin içeriğindeki doğal ögelerin anti-diyabetik etkinliği ve düşük toksisitesi nedeniyle ilerleyen sağlık stratejilerinde umut verici bir alternatif olabileceği belirtilerek bu bileşenlerin anti-diyabetik etkisini tanımlamaya ve açıklamaya yönelik çalışmalar geliştirilmiştir. Bu çalışmada da bu bileşenlerin potansiyel anti-diyabetik etki mekanizmaları araştırılmıştır.
Anti-Diabetic Efficacy of Some Bioactive Compounds in Foods
Diabetes is a chronic and growing global health problem characterized by hyperglycemia. Diabetes is a disease that is predicted to increase in complications, prevalence, and health expenditures in the coming years. While it is estimated that the number of patients who will struggle with diabetes will increase to 643 million in 2030 and 783 million in 2045, it is reported that diabetes has caused at least 966 billion dollars in health expenditures with an increase of 316% in the last 15 years. Today, diabetes management is done with antihyperglycemic drugs (metformin, sulfonylurea derivatives, etc.) and insulin therapy. The high cost and various side effects of drugs (hypoglycemia, bloating, diarrhea, weight gain, weakness, etc.) have led researchers to develop different treatment methods. In this context, studies have accelerated in recent years to investigate the effects of non-nutrient bioactive dietary components on the pathobiology of diabetes, as well as traditional insulin and anti-diabetic drug treatments. Studies have been developed to define and explain the anti-diabetic effect of these components, stating that natural components in foods can be a promising alternative in advancing health strategies due to their anti-diabetic activity and low toxicity. In this study, the potential anti-diabetic effect mechanisms of these components were investigated.
___
- Abubakar, S. M., Ukeyima, M. T., Spencer, J. P., & Lovegrove, J. A. (2019). Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients, 11(2), 341. https://doi.org/10.3390/nu11020341
- Abutair, A. S., Naser, I. A., & Hamed, A. T. (2016). Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutrition Journal, 15(1), 1-7. https://doi.org/10.1186/s12937-016-0207-4
- Addepalli, V., & Suryavanshi, S. V. (2018). Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy, 108, 1517-1523. https://doi.org/10.1016/j.biopha.2018.09.179
- Anis, M. A., & Sreerama, Y. N. (2020). Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chemistry, 315, 126265. https://doi.org/10.1016/j.foodchem.2020.126265
- Bashir, N., Manoharan, V., & Miltonprabu, S. (2016). Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling. The Journal of Nutritional Biochemistry, 32, 128-141. https://doi.org/10.1016/j.jnutbio.2016.03.001
- Chen, C., Zeng, Y., Xu, J., Zheng, H., Liu, J., Fan, R., Zhu, W., Yuan, L., Qin, Y., Chen, S., Zhou, Y., Wu, Y., Wan, J., Mi, M., & Wang, J. (2016). Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Experimental And Therapeutic Medicine, 12(2), 1232-1242. https://doi.org/10.3892/etm.2016.3377
- Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. I. D. F. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. https://doi.org/10.1016/j.diabres.2018.02.023
- Dai, F. J., & Chau, C. F. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25(1), 37-42. https://doi.org/10.1016/j.jfda.2016.09.006
- de Paulo Farias, D., de Araujo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. https://doi.org/10.1016/j.foodres.2021.110383
- ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B.S., Hilliard, M.E., Isaacs, D., Johnson, E.L., Kahan, S., Khunti, K., Leon, J., Lyons, S.K., Perry, M.L., Prahalad, P., Pratley, R.E., Seley, J.J., Stanton, R.C., & Gabbay, R. A. (2023). 1. Improving care and promoting health in populations: standards of care in diabetes—2023. Diabetes Care, 46(1), 10-18. https://doi.org/10.2337/dc23-S001
- Fettach, S., Mrabti, H. N., Sayah, K., Bouyahya, A., Salhi, N., Cherrah, Y., & El Abbes, F. M. (2019). Phenolic content, acute toxicity of Ajuga iva extracts and assessment of their antioxidant and carbohydrate digestive enzyme inhibitory effects. South African Journal of Botany, 125, 381-385. https://doi.org/10.1016/j.sajb.2019.08.010
- Fu, Z., R Gilbert, E., & Liu, D. (2013). Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews, 9(1), 25-53. https://doi.org/10.2174/157339913804143225
- Ganesan, K., & Xu, B. (2019). Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules, 24(14), 2556. https://doi.org/10.3390/molecules24142556
- Ghorbani, A., Rashidi, R., & Shafiee-Nick, R. (2019). Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomedicine & Pharmacotherapy, 111, 947-957. https://doi.org/10.1016/j.biopha.2018.12.127
- Halim, M., & Halim, A. (2019). The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1165-1172. https://doi.org/10.1016/j.dsx.2019.01.040
- Hu, J. L., Nie, S. P., Li, N., Min, F. F., Li, C., Gong, D., & Xie, M. Y. (2014). Effect of gum arabic on glucose levels and microbial short-chain fatty acid production in white rice porridge model and mixed grain porridge model. Journal of Agricultural and Food Chemistry, 62(27), 6408-6416. https://doi.org/10.1021/jf501557b
International Diabetes Federation (IDF). (2021). IDF Diabetes Atlas (10th ed.). Brussels. https://www.idf.org/e-library/epidemiology-research/diabetes-atlas.html
- Jiao, Y., Wang, X., Jiang, X., Kong, F., Wang, S., & Yan, C. (2017). Antidiabetic effects of Morus alba fruit polysaccharides on high fat diet-and streptozotocin-induced type 2 diabetes in rats. Journal of Ethnopharmacology, 199, 119-127. https://doi.org/10.1016/j.jep.2017.02.003
- Jovanovski, E., Khayyat, R., Zurbau, A., Komishon, A., Mazhar, N., Sievenpiper, J. L., Mejia, S.B., Ho, H.V.T., Li, D., Jenkins, A.L., Duvnjak, L., & Vuksan, V. (2019). Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controll trials. Diabetes Care, 42(5), 755-766. https://doi.org/10.2337/dc18-1126
- Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., Pan, M., Li, Y., Lee, R.J., & Wang, D. (2016). Antidiabetic and antinephritic activities of aqueous extract of Cordyceps militaris fruit body in diet-streptozotocin-induced diabetic Sprague Dawley rats. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/9685257
- Lv, Y., Hao, J., Liu, C., Huang, H., Ma, Y., Yang, X., & Tang, L. (2019). Anti-diabetic effects of a phenolic-rich extract from Hypericum attenuatum Choisy in KK-Ay mice mediated through AMPK/PI3K/Akt/GSK3β signaling and GLUT4, PPARγ, and PPARα expression. Journal of Functional Foods, 61, 103506. https://doi.org/10.1016/j.jff.2019.103506
- Miao, M., Jiang, B., Jiang, H., Zhang, T., & Li, X. (2015). Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion. Food Chemistry, 186, 20-25. https://doi.org/10.1016/j.foodchem.2015.02.049
- Mileo, A. M., & Miccadei, S. (2016). Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxidative Medicine and Cellular Longevity, 6475624. https://doi.org/10.1155/2016/6475624
- Nie, Q., Hu, J., Gao, H., Li, M., Sun, Y., Chen, H., Zuo, S., Fang, Q., Huang, X., Yin, J., & Nie, S. (2021). Bioactive dietary fibers selectively promote gut microbiota to exert antidiabetic effects. Journal of Agricultural and Food Chemistry, 69(25), 7000-7015. https://doi.org/10.1021/acs.jafc.1c01465
- Reimer, R. A., Wharton, S., Green, T. J., Manjoo, P., Ramay, H. R., Lyon, M. R., Lyon, M.R., & Wood, S. (2021). Effect of a functional fibre supplement on glycemic control when added to a year-long medically supervised weight management program in adults with type 2 diabetes. European Journal of Nutrition, 60, 1237-1251. https://doi.org/10.1007/s00394-020-02328-8
- Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews İmmunology, 9(5), 313-323. https://doi.org/10.1038/nri2515
- Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow, T., Eckel, R. H., & Groop, L. (2017). Differentiation of diabetes by pathophysiology, natural history and prognosis. Diabetes, 66, 241–255. http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-0806/-/DC1
- Sun, C., Liu, Y., Zhan, L., Rayat, G. R., Xiao, J., Jiang, H., Li, X., & Chen, K. (2021). Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology, 117, 3-14. https://doi.org/10.1016/j.tifs.2020.07.024
- The InterAct Consortium. (2015). Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia, 58, 1394–1408. https://doi.org/10.1007/s00125-015-3585-9
- Tolhurst, G., Heffron, H., Lam, Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., & Gribble, F. M. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes, 61(2), 364-371. https://doi.org/10.2337/db11-1019
- Türkiye Beslenme Rehberi (TÜBER). (2022). Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Sağlık Bakanlığı Yayın No:1031, Ankara. https://hsgm.saglik.gov.tr/depo/birimler/saglikli-beslenme-ve-hareketli-hayat-db/Dokumanlar/Rehberler/Turkiye_Beslenme_Rehber_TUBER_2022_min.pdf
- Wang, D., Li, C., Fan, W., Yi, T., Wei, A., & Ma, Y. (2019). Hypoglycemic and hypolipidemic effects of a polysaccharide from Fructus Corni in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules, 133, 420-427. https://doi.org/10.1016/j.ijbiomac.2019.04.160
- Weickert, M. O., & Pfeiffer, A. F. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. The Journal of Nutrition, 148(1), 7-12. https://doi.org/10.1093/jn/nxx008
- Wu, H. J., & Wu, E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 3(1), 4-14. https://doi.org/10.4161/gmic.19320
- Wu, T., Guo, Y., Liu, R., Wang, K., & Zhang, M. (2016). Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats. Food & Function, 7(5), 2469-2478. https://doi.org/10.1039/C6FO00401F
- Xiao, H., Chen, C., Li, C., Huang, Q., & Fu, X. (2019). Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. International Journal of Biological Macromolecules, 132, 308-315. https://doi.org/10.1016/j.ijbiomac.2019.03.138
- Yang, Y. J., & Sheu, B. S. (2016). Metabolic interaction of Helicobacter pylori infection and gut microbiota. Microorganisms, 4(1), 15. https://doi.org/10.3390/microorganisms4010015
- Zhang, G. Y., Nie, S. P., Huang, X. J., Hu, J. L., Cui, S. W., Xie, M. Y., & Phillips, G. O. (2016). Study on Dendrobium officinale O Acetyl-glucomannan (Dendronan). 7. Improving effects on colonic health of mice. Journal of Agricultural and Food Chemistry, 64(12), 2485-2491. https://doi.org/10.1021/acs.jafc.5b03117
- Zhang, J., Zhao, X., Zhao, L. Q., Zhao, J., Qi, Z., & Wang, L. A. (2017). A primary study of the antioxidant, hypoglycemic, hypolipidemic, and antitumor activities of ethanol extract of brown slimecap mushroom, Chroogomphus rutilus (Agaricomycetes). International Journal of Medicinal Mushrooms, 19(10). 905–913. https://doi.org/10.1615/IntJMedMushrooms.2017024564
- Zhou, J., Xu, G., Yan, J., Li, K., Bai, Z., Cheng, W., & Huang, K. (2015). Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. Journal of Ethnopharmacology, 164, 229-238. https://doi.org/10.1016/j.jep.2015.02.026