The effects of fumaric acid on in vitro true digestibility of tea wastes produced with different cultivation methods

The effects of fumaric acid on in vitro true digestibility of tea wastes produced with different cultivation methods

This study aims to determine the effects of adding different fumaric acid (FA) levels to tea factory wastes (TFW) produced by different cultivation methods on in vitro true digestibility. In vitro true digestibility of feed (IVTDAs feed), dry matter (IVTDDM), organic matter (IVTDOM), and neutral detergent fibre (IVTDNDF) were performed with a Daisy Incubator. Fumaric acid did not add to the control group and added 0.1%, 0.2%, or 0.3% FA to the experimental groups. When the cultivation methods were compared (conventional and organic tea wastes), it was seen that FA made a significant difference (P<0.05) in conventional tea wastes at all levels. However, when comparing organic and conventional tea wastes themselves, there was no significant effect of FA level on digestibility parameters (P>0.05). There was a significant difference (P<0.05) for IVTDAs feed, IVTDDM and IVTDOM values in interaction between treatment and cultivation methods. The research results showed that the digestibility values of the conventional tea wastes were higher for ruminants than the tea waste produced by the organic method, and the use of 0.3% FA in organic tea wastes had a positive effect on IVTD values for ruminants.

___

  • Akram, M. Z., Fırıncıoğlu S. Y. (2019). The Use of Agricultural Crop Residues as Alternatives to Conventional Feedstuffs for Ruminants. Eurasian Journal of Agricultural Research. 3(2), 58-66.
  • Angga, W. A., Rizal, Y., Mahata, M. E., Ahadiya, Y., Mayerni, R. (2018). Potential of waste tea leaves (Camellia sinensis) in West Sumatra to be processed into poultry feed. Pakistan Journal of Nutrition, 17, 287-293.
  • ANKOM (2002). Operator’s manual. Ankom 200/220 fiber analyzer. Ankom Technology Corp., Fairport, USA.
  • AOAC (2006). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Inc., Arlington, VA. pp. 354-361.
  • Bayaru, E., Kanda, S., Kamada, T., Itabashı, H., Andoh, S., Nishida, T., Ishida, M., Itoh, T., Nagara, K., Isobe, Y. (2001). Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Animal Science Journal, 72(2), 139–46.
  • Beauchemin, K.A., McGinn, S.M. (2006). Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science, 84(6), 1489–96.
  • Bharathidhasan, A., Karunakaran, A., Pugazhenthi, T. R., Ezhilvalavan, S. (2016). The effect of supplemental organic acid on methane reduction to decrease the global warming from dairy cattle. Interational Journal of Advanced Chemical Science and Applications, 3(4), 60-64.
  • Bryant, M. P. (1973). Federation Proceedings, 32, 1809–13.
  • Burner, D. M., Carrier, D. J., Belesky, D. P., Pote, D. H., Ares, A., Clausen, E. C. (2008). Yield components and nutritive value of Robinia pseudoacacia and Albizia julibrissin in Arkansas. Agroforestry Systems, 72(1), 51-62.
  • Carro, M. D., Ungerfeld, E. D. (2015). Utulization of organic acids to manipulate ruminal fermentation and improve ruminant productivity. In: Puniya A., Singh R., Kamra D. (Eds) Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Castillo, C., Benedito, J. L., Méndez, J., Pereira, V., Lopez-Alonso, M., Miranda, M., Hernández, J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115(1-2), 101-16.
  • Chen, Y., Zhao, Y., Fu, Z., Ma, Z., Qian, F., Aibibuli, F., Bin, Y., Abula, R., Xiaoli, X., Aniwaer, A. (2011). Chemical composition and in vitro ruminal fermentation characteristics of tetraploid black locust (Robinia pseudoacacia L.). Asian Journal of Animal and Veterinary Advances, 6(7), 706-14.
  • Ebrahimi, S. H., Datta, M. M., Heidarian, V., Sirohi, S. K., Tyagi, A. K. (2015). Effects of fumaric or malic acid and 9,10 anthraquinone on digestiblity, micobial protein synthesis, methane emission and performance of growing calves. The Indian Journal of Animal Sciences, 85(9), 1000-1005.
  • Genc, B., Salman, M., Bolukbas, B., Kaya, I., Acıcı, M. (2020). The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(2), 185-192.
  • Kara, K., Aktug, E., Cagrı, A., Guclu, B. K., Baytok, E. (2015). Effect of formic acid on in vitro ruminal fermentation and methane emission. Turkish Journal of Agriculture-Food Science and Technology, 3(11), 856–860.
  • Kara, K., Ozkaya, S., Erbas, S., Baytok, E. (2018). Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley based concentrated mix feed of beef cattle. Journal of Applied Animal Research, 46(1), 178-183.
  • Kolver, E., Aspin, P. W. (2006). Supplemental fumarate did not influence milk solids or methane production from dairy cows fed high quality pasture. Proceedings of the New Zealand Society of Animal Production, 66, 409–415.
  • Kumar, R., Vaithiyanatha, S. (1990). Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Animal Feed Science and Technology, 30(1-2), 21-38.
  • Li, X. Z., Yan, C., Choi, S. H., Long, R., Jin, G. L., Song, M. K. (2009). Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian-Australasian Journal of Animal Sciences, 22(1), 82–89.
  • Li, F., Guan, L. L. (2017). Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Applied and Environmental Microbiology, 83(9), e00061–17.
  • Li, Z., Liu, N., Cao, Y., Jin, C., Cai, C., Yao, Y. (2018). Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concantrate particle size. Journal of Animal Science and Biotechnology, 9(1), 1-9.
  • Lopez, S., Valdés, C., Newbold, C., Wallace, R. (1999). Influence of sodium fumarate addition on rumen fermentation in vitro. British Journal of Nutrition, 81(1), 59-64.
  • Martin, S. A. (2004). Effects of DL-malate on in vitro forage fiber digestion by mixed ruminal microorganisms. Curr. Microbiol., 48(1), 27–31.
  • McGinn, S. M., Beauchemin, K. A., Coates, T., Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science, 82(11), 3346–3356.
  • Molano, G., Knight, T.W., Clark, H. (2008). Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs. Australian Journal of Experimental Agriculture, 48(2), 165-168.
  • Nasehi, M., Torbatinejad, N., Rezaie, M., Ghoorchi, T. (2017). Effect of polyethylene glycol addition on nutritive value of green and black tea co-products in ruminant nutrition. Asian Journal of Animal and Veterinary Advances, 12, 254-260.
  • Newbold, C., López, S., Nelson, N., Ouda, J., Wallace, R., Moss, A. (2005). Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British Journal of Nutrition, 94(1), 27-35.
  • Ozyılmaz, N., Genc, B. (2019). Determination of Nutrient Content and In Vitro Digestibility Values of Organic and Conventional Tea (Camellia sinensis) Factory Wastes. International Journal of Veterinary and Animal Research, 2019;2 (2): 29-33.
  • Partanen, K. (2001). Organic acids- their efficacy and modes of action in pigs, In: Gut environment in pigs. Piva A, Bach Knudsen KE, JE (Eds.) Lindberg, Nottingham University Press. 2001; pp. 154-162.
  • Patra, A., Park, T., Kım, M., Yu, Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1), 13.
  • Sahoo, A., Jena, B. (2014). Organic acids as rumen modifiers. International Journal of Science and Research, 3, 2262-2266.
  • Silanikove, N., Gilboa, N., Perevolotsky, A., Nitsan, Z. (1996). Goats fed tannin-containing leaves do not exhibit toxic syndromes. Small Ruminant Research, 21(3), 195-201.
  • Van Soest, P. J., Robertson, J. B., Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-97.
  • Yang, C. J., Mao, S. Y., Long, L. M., Zhu, W. Y (2012). Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal, 6(11), 1788–94.
  • Yu, C. W., Chen, Y. S., Cheng, Y. H., Cheng, Y. S., Yang C. M. J., Chang, C. T. (2010). Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does. Journal of Dairy Science, 93(2), 701–710.
  • Zhou, Y., Mcsweeney, C., Wang, J., Liu, J. (2012). Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets. Animal, 6(5), 815-823.