Comparison of Base Excess Approach Versus Stewart’s Physicochemical Method for the Evaluation of Metabolic Acid-Base Disturbances in Critically ill Patients Infected with SARS-CoV-2

Objective: Complex metabolic acid-base disturbances can be seen in critically ill patients infected withthe SARS-CoV-2 virus. For arterial blood gas (ABG) analysis, base excess (BE) approach enables limitedevaluation of the etiological factors. The Stewart’s physicochemical approach, on the other hand, maynot reveal etiological agents adequately. In this study, we aimed to compare BE approach versus physicochemical method for the evaluation of metabolic acid-base disturbances in critically ill patientsinfected with SARS-CoV-2.Method: Between March 2020 and May 2020, ABG analysis results of a total of 113 patients (71 males,42 females) infected with SARS-CoV-2 and hospitalized in the adult intensive care units were retrospectively analyzed. The patients were divided into groups according to the BE approach and evaluated forphysicochemical components. The ABG and some electrolyte values were compared among groups.Results: The most common acidotic components according to the Stewart’s method were hyperphosphatemia (84.9%), but low strong ion difference (SID) acidosis (62.2%) in patients with metabolic acidosis according to the BE approach. Low SID acidosis (50%) and hyperphosphatemia (30.9%) in patientswith normal BE and hyperphosphatemia (77.7%) in patients with metabolic alkalosis according to theBE approach were observed. In patients with metabolic acidosis according to BE approach, 71.6% of thepatients had hypoalbuminemia and 24.5% of the cases had high SID alkalosis among the Stewart’salkalosis components. Strong ion gap (SIG) acidosis was seen in 11.1% and low SID acidosis was seen in11.1% in patients with metabolic acidosis according to the BE approach.Conclusion: Physiochemical approach seems to provide additional information regarding the etiologicalfactors and unravel the invisible part of the iceberg for the evaluation of metabolic acid-base disturbances in critically ill patients infected with the SARS-CoV-2 virus.

SARS-CoV-2 ile Enfekte Kritik Hastaların Metabolik Asit Baz Bozukluklarının Değerlendirmesinde Baz Fazlalığı Yaklaşımı ile Stewart’ın Fizikokimyasal Yönteminin Karşılaştırması

Amaç: SARS-CoV-2 virüsü ile enfekte kritik hastalarda kompleks metabolik asit-baz bozuklukları görülebilir. Arteryel kan gazı (AKG) analizinde baz fazlalığı (BF) yaklaşımı ile, etiyolojik nedenler yeteri kadar ortaya konamayabilir. Stewart fizikokimyasal yaklaşımı ile AKG analizinde etiyolojik nedenler daha net ortaya konabilir. Bu çalışmanın amacı, SARS-CoV-2 ile enfekte kritik hastaların metabolik asit-baz bozukluklarının değerlendirmesinde BF yaklaşımı ile fizikokimyasal yaklaşımı karşılaştırmaktır. Yöntem: Mart 2020-Mayıs 2020 tarihleri arasında SARS-CoV-2 ile enfekte olup erişkin yoğun bakım ünitelerinde yatan toplam 113 hastanın (71 erkek, 42 kadın) yoğun bakıma girişlerindeki AKG sonuçları retrospektif olarak incelendi. Hastalar BE yaklaşımına göre gruplara ayrıldı ve bu gruplar fizikokimyasal içeriklerine göre incelendi. AKG ve bazı elektrolit değerleri gruplar arasında karşılaştırıldı. Bulgular: Stewart yöntemine göre en sık görülen asidotik komponentler, BF’ye göre metabolik asidozda olan hastalarda: hiperfosfatemi (%84.9) ve düşük güçlü iyon farkı (SID) asidozu (%62.2) idi. BE normal olan hastalarda: düşük SID asidoz (%50) ve hiperfosfatemi (%30.9); BF’ye göre metabolik alkalozu olan hastalarda hiperfosfatemi (%77.7) idi. BE değerine göre metabolik asidozda olan hastalarda, Stewart alkaloz komponentlerinden, %71.6’sında hipoalbuminemi, %24.5’de ise yüksek SID alkaloz olduğu görüldü. BE değerine göre metabolik alkalozda olan hastalarda, Stewart asidoz komponentlerinden: %11.1’inde güçlü iyon açığı (SIG) asidozu ve %11.1’inde düşük SID asidozu olduğu görüldü. Sonuç: SARS-CoV-2 virüsü ile enfekte kritik hastaların metabolik asit baz bozukluklarının değerlendirmesinde fizikokimyasal yaklaşım, etiyolojik olarak daha ayrıntılı bilgi verebilir ve bu yaklaşım ile buzdağının görünmeyen kısmı görünür hale gelebilir.

___

1. Konukoglu D. COVID-19: Clinical and pathophysiological features and laboratory diagnosis. Int J Med Biochem. 2020;3:47-51 https://doi.org/10.14744/ijmb.2020.98852

2. Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach. Medicine. 1980;59:161- 87. https://doi.org/10.1097/00005792-198005000-00001

3. Siggaard-Andersen O. The Acid-Base Status of the Blood. 4th ed. Copenhagen: Munksgaard. 1974.

4. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444-61. https://doi.org/10.1139/y83-207

5. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of Metabolic Acid-Base Disturbances in Critically Ill Patients. Am J Respir Crit Care Med. 2000;162:2246-51. https://doi.org/10.1164/ajrccm.162.6.9904099

6. Wilkes P. Hypoproteinemia, strong-ion difference, and acid-base status in critically ill patients. J Appl Physiol. 1998;84:1740-8. https://doi.org/10.1152/jappl.1998.84.5.1740

7. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand. 1995;39:123-8. https://doi.org/10.1111/j.1399-6576.1995.tb04346.x

8. Figge J, Mydosh T, Fencl V. Serum proteins and acidbase equilibria: a follow-up. J Lab Clin Med. 1992;120:713-9.

9. Severinghaus JW. Acid-base balance nomogram--a Boston-Copenhagen detente. Anesthesiology. 1976;45:539-41. https://doi.org/10.1097/00000542-197611000-00013

10. Severinghaus JW. Siggaard-Andersen and the “Great Trans-Atlantic Acid-Base Debate”. Scand J Clin Lab Investig. 1993;214:99-104. https://doi.org/10.1080/00365519309090685

11. Corey HE. Stewart and beyond: new models of acidbase balance. Kidney Int. 2003;64:777-87. https://doi.org/10.1046/j.1523-1755.2003.00177.x

12. Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care. 2005;9:500-7. https://doi.org/10.1186/cc3789

13. Dubin A, Menises MM, Masevicius FD, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med. 2007;35:1264-70. https://doi.org/10.1097/01.CCM.0000259536.11943.90

14. Feldman M, Soni N, Dickson B. Influence of hypoalbu- minemia or hyperalbuminemia on the serum anion gap. J Lab Clin Med. 2005;146:317-20. https://doi.org/10.1016/j.lab.2005.07.008

15. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577-81. https://doi.org/10.1097/00003246-199908000-00030

16. Martin M, Murray J, Berne T, Demetriades D, Belzberg H. Diagnosis of Acid-Base Derangements and Mortality Prediction in the Trauma Intensive Care Unit: The Physiochemical Approach. J Trauma Inj Infect Crit Care. 2005;58:238-43. https://doi.org/10.1097/01.TA.0000152535.97968.4E

17. Kaplan LJ, Cheung NH-T, Maerz L, et al. A Physicochemical Approach to Acid-Base Balance in Critically Ill Trauma Patients Minimizes Errors and Reduces Inappropriate Plasma Volume Expansion. J Trauma Inj Infect Crit Care. 2009;66:1045-51. https://doi.org/10.1097/TA.0b013e31819a04be

18. Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8:506-17. https://doi.org/10.1016/S2213-2600(20)30161-2

19. Tripathy S. Extreme metabolic alkalosis in intensive care. Indian J Crit Care Med. 2009;13:217-20. https://doi.org/10.4103/0972-5229.60175

20. Liu BC, Gao J, Li Q, Xu L-M. Albumin caused the increasing production of angiotensin II due to the dysregulation of ACE/ACE2 expression in HK2 cells. Clin Chim Acta. 2009;403:23-30. https://doi.org/10.1016/j.cca.2008.12.015

21. Szrama J, Smuszkiewicz P. An acid-base disorders analysis with the use of the Stewart approach in patients with sepsis treated in an intensive care unit. Anaesthesiol Intensive Ther. 2016;48:180-184. https://doi.org/10.5603/AIT.a2016.0020

22. Moviat M, van den Boogaard M, Intven F, van der Voort P, van der Hoeven H, Pickkers P. Stewart analysis of apparently normal acid-base state in the critically ill. J Crit Care. 2013;28:1048-54. https://doi.org/10.1016/j.jcrc.2013.06.005

23. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med. 1992;20:80-93. https://doi.org/10.1097/00003246-199201000-00020

24. Adrogué HJ, Madias NE. Assessing Acid-Base Status: Physiologic Versus Physicochemical Approach. Am J Kidney Dis. 2016;68:793-802. https://doi.org/10.1053/j.ajkd.2016.04.023

25. Rastegar A. Clinical Utility of Stewart’s Method in Diagnosis and Management of Acid Base Disorders. Clin J Am Soc Nephrol. 2009;4:1267-74. https://doi.org/10.2215/CJN.01820309

26. Morris CG, Low J. Metabolic acidosis in the critically ill: Part 1. Classification and pathophysiology. Anaesthesia. 2008;63:294-301. https://doi.org/10.1111/j.1365-2044.2007.05370.x

27. Boniatti MM, Cardoso PRC, Castilho RK, Vieira SRR. Acid-base disorders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med. 2009;35:1377-82. https://doi.org/10.1007/s00134-009-1496-2
Anestezi Dergisi-Cover
  • ISSN: 1300-0578
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1993
  • Yayıncı: Betül Kartal
Sayıdaki Diğer Makaleler

Comparison of Base Excess Approach Versus Stewart’s Physicochemical Method for the Evaluation of Metabolic Acid-Base Disturbances in Critically ill Patients Infected with SARS-CoV-2

Serkan SENKAL, Umut KARA, İlker ÖZDEMİRKAN, Fatih ŞİMŞEK, Sami EKSERT, Nesibe DAŞDAN, Serdar YAMANYAR, Emel UYAR, Ümit SAVAŞÇI, Gürhan TAŞKIN, Deniz DOGAN, Ahmet COŞAR

Erişkin Obez Hastalarda Rejyonal Anestezi

Emine Aysu ŞALVIZ

Supraklavicüler Brakial Pleksus Sonrası Analjezinin Uzatılmasında İntavenöz Dekzametazonun Etkisi: Randomize Kontrollü Çalışma

Surendhar SABA, Anju Romina BHALOTRA

Postdural Delinme Baş Ağrısında Teofilin Etkinliğinin Değerlendirilmesi

Mesut BAKIR, Şebnem Rumeli ATICI, Hüseyin Utku YILDIRIM

The Role of Ultrasonography to Estimate Gastric Content in a Case with Aspiration Ris

Muhammet Ahmet KARAKAYA, Emrah ALPER, Seçil ÇETİN, Kamil DARÇIN, Özlem ÖZKALAYCI, Yavuz GÜRKAN

Kardiyak Cerrahide Santral Venöz Laktat Ölçümü Arteryel Laktat Ölçümünün Yerini Tutabilir mi?

Bahadır AYTEKİN, Büşra TEZCAN, Çilem BAYINDIR DİCLE, Sema SARI, İbrahim MUNGAN, Derya ADEMOĞLU, Alev ŞAYLAN, Ayşegül ÖZGÖK, Hija YAZICIOĞLU

Yoğun Bakımda Sedasyon Amaçlı Kullanılan İlaçların Biyokimyasal Markerlara Olan İnterferans Etkisinin Deneysel Araştırılması

Evren BÜYÜKFIRAT, Ataman GÖNEL, Mahmut Alp KARAHAN, Nuray ALTAY, Kenan EROL, Başak PEHLİVAN, AHMET ATLAS

Aspirasyon Riski Olan Bir Olguda Mide İçeriğinin Tahmininde Ultrasonografinin Rolü

Yavuz GÜRKAN, Muhammet Ahmet KARAKAYA, Seçil ÇETİN, Kamil DARÇIN, Emrah ALPER, Özlem ÖZKALAYCI

Attenuation of Hemodynamic Response to Tracheal Intubation with Pregabalin and Dexmedetomidine - A Prospective Randomized Double Blinded Study

K. Ganapathy SAMBANDAM, Dhayanethi CHANDRASEKRAN, Ramkumar DHANASEKARA, Senthilkumar SUKUMAR, Ranjith Karthekeyan BASKAR, Venkata Rajeshkumar KODALİ

Regional Anesthesia in Adult Patients with Obesity

Emine Aysu ŞALVIZ