Varikosel ile ilişkili infertilite patofizyolojisinde mikroRNA’ların rolü

Varikosel, erkek infertilitesinin en yaygın tedavi edilebilir nedeni olarak kabul edilir ve varikoselin fertilite üzerindeki etkisini açıklamak için olası patofizyolojik mekanizmalar önerilmiştir. Ancak, varikoselle ilişkili infertilitenin moleküler düzeyde etiyolojisi hala belirsizliğini korumaktadır. MikroRNA’lar (miRNA’lar), hedef mRNA’larındaki tamamlayıcı baz dizileriyle eşleşerek genlerin ekspresyonlarını düzenleyen küçük kodlamayan RNA molekülleridir. Hücredeki fizyolojik işlevleri dışında, miRNA’ların ekspresyonlarındaki düzensizliğin birçok hastalığın gelişiminde rol oynadığı bildirilmiştir. Bu derlemede, varikoselle ilişkili infertilitede seminal, testiküler ve spermatozoal miRNA’ların olası rolleri incelenmiştir. Dokuya özgü miRNA’ların anormal ekspresyonunun, belirli erkek üreme sistemi bozukluklarıyla ilişkili olduğu gösterilmiştir. Bu nedenle, bu tür miRNA’ların varikosel patofizyolojisindeki rolüne odaklanmak, varikoselle ilişkili erkek infertilitesinin moleküler mekanizmalarını aydınlatabilir ve etkili biyobelirteçler ve terapötik ajanlar bulma potansiyeli yaratabilir.

Role of microRNAs in the pathophysiology of varicocele-related infertility

Varicocele is considered the most common treatable cause of male infertility, and possible pathophysiological mechanisms have been proposed to explain the effect of varicocele on fertility. However, the molecular etiology of infertility associated with varicocele is still unclear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of genes by binding complementary base sequences in target mRNAs. Apart from its function in many physiological cell processes, it has been reported that the irregularity of miRNAs expression plays a role in the development of many diseases. In this review, the possible roles of seminal, testicular, and spermatozoal miRNAs in varicocele-related infertility were discussed. Abnormal expression of tissue-specific miRNAs is associated with certain male reproductive system disorders. Thus, focusing on the role of such miRNAs in varicocele pathophysiology could illuminate the molecular mechanisms of varicocele-associated male infertility and create the potential to find effective biomarkers and therapeutic agents.

___

  • 1. Arab D, Doustmohammadi H, Ardestani Zadeh A. Dietary supplements in the management of varicocele-induced infertility: A review of potential mechanisms. Andrologia 2021;53:e13879. [CrossRef]
  • 2. Panner Selvam MK, Baskaran S, Agarwal A, Henkel R. Protein profiling in unlocking the basis of varicocele-associated infertility. Andrologia 2021;53:e13645. [CrossRef]
  • 3. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 2012;9:678–90. [CrossRef]
  • 4. Clavijo RI, Carrasquillo R, Ramasamy R. Varicoceles: prevalence and pathogenesis in adult men. Fertil Steril 2017;108:364–9. [CrossRef]
  • 5. Zhao X-D, Ma X, Ma P-C, Wang J-W. A network meta-analysis protocol of efficacy and safety evaluation of different surgery regimens for varicocele patients with infertility: A study protocol. Medicine (Baltimore) 2021;100:e21150. [CrossRef]
  • 6. Jensen CFS, Ostergren P, Dupree JM, Ohl DA, Sonksen J, Fode M. Varicocele and male infertility. Nat Rev Urol 2017;14:523–33. [CrossRef]
  • 7. World Health Organisation. WHO laboratory manual for the examination and processing of human semen 2010, World Health Organization: Geneva. https://apps.who.int/iris/ handle/10665/44261
  • 8. Kadıoğlu A, Çayan S, Aydos K, Aşçı R, Alıcı B. Varikosel Klavuzu, Türk Androloji Derneği, 2005: İstanbul. https://www.androloji. org.tr/androlojiDATA/tadYayinlari/Varikosel-Kilavuzu.pdf
  • 9. Panner Selvam MK, Agarwal A. Sperm and Seminal Plasma Proteomics: Molecular Changes Associated with VaricoceleMediated Male Infertility. World J Mens Health 2020;38:472–83. [CrossRef]
  • 10. Santana VP, James ER, Miranda-Furtado CL, Souza MF, Pompeu CP, Esteves SC, et al. Differential DNA methylation pattern and sperm quality in men with varicocele. Fertil Steril 2020;114:770– 8. [CrossRef]
  • 11. Santana VP, Miranda-Furtado CL, de Oliveira-Gennaro FG, Dos Reis RM. Genetics and epigenetics of varicocele pathophysiology: an overview. J Assist Reprod Genet 2017;34:839–47. [CrossRef ]
  • 12. Santana VP, Miranda-Furtado CL, Pedroso DCC, Eiras MC, Vasconcelos MAC, Ramos ES, et al. The relationship among sperm global DNA methylation, telomere length, and DNA fragmentation in varicocele: a cross-sectional study of 20 cases. Syst Biol Reprod Med 2019;65:95–104. [CrossRef]
  • 13. Gunes S, Arslan MA, Taskurt Hekim GN, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet 2016;33:553–69. [CrossRef]
  • 14. Reza A, Choi Y-J, Han SG, Song H, Park C, Hong K, Kim J-H. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2019;94:415–38. [CrossRef]
  • 15. Chen X, Li X, Gou J, Zhang P, Zeng W. The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 2017;8:35. [CrossRef]
  • 16. Khawar MB, Mehmood R, Roohi N. MicroRNAs: Recent insights towards their role in male infertility and reproductive cancers. Bosn J Basic Med Sci 2019;19:31–42. [CrossRef]
  • 17. Salas-Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology 2020;8:7–26. [CrossRef]
  • 18. Abu-Halima M, Galata V, Backes C, Keller A, Hammadeh M, Meese, E. MicroRNA signature in spermatozoa and seminal plasma of proven fertile men and in testicular tissue of men with obstructive azoospermia. Andrologia 2020;52:e13503. [CrossRef]
  • 19. Pal MK, Jaiswar SP, Dwivedi VN, Tripathi AK, Dwivedi A, Sankhwar P. MicroRNA. a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol Med 2015;12:328–41. [CrossRef]
  • 20. Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2020;26:199–214. [CrossRef]
  • 21. Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 2013;3:2179–90. [CrossRef]
  • 22. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 2018;9:402. [CrossRef]
  • 23. Forouhari S, Mahmoudi E, Safdarian E, Beygi Z, Gheibihayat SM. MicroRNA. A Potential Diagnosis for Male Infertility. Mini Rev Med Chem 2020;21:1226–36. [CrossRef]
  • 24. Zhi EL, Liang G-Q, Li P, Chen H-X, Tian R-H, Xu P, Li Z. Seminal plasma miR-192a: a biomarker predicting successful resolution of nonobstructive azoospermia following varicocele repair. Asian J Androl 2018;20:396–9. [CrossRef]
  • 25. Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, Backes C. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 2013;99:1249–55.e16. [CrossRef]
  • 26. Gholami D, Amirmahani F, Yazdi RS, Hasheminia T, Teimori H. MiR-182-5p, MiR-192-5p, and MiR-493-5p Constitute a Regulatory Network with CRISP3 in Seminal Plasma Fluid of Teratozoospermia Patients. Reprod Sci 2021;28:2060–9. [CrossRef ]
  • 27. Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001;276:7320–6. [CrossRef]
  • 28. Baazeem A, Belzile E, Ciampi A, Dohle G, Jarvi K, Salonia A, et al. Varicocele and male factor infertility treatment: a new metaanalysis and review of the role of varicocele repair. Eur Urol 2011;60:796–808. [CrossRef]
  • 29. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology 2020;8:53–81. [CrossRef]
  • 30. Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, de Alaniz MJ, Marra CA. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl 2007;30:519–30. [CrossRef]
  • 31. Cayan S, Kadioglu TC, Tefekli A, Kadioglu A, Tellaloglu S. Comparison of results and complications of high ligation surgery and microsurgical high inguinal varicocelectomy in the treatment of varicocele. Urology 2000;55:750–4. [CrossRef]
  • 32. Chan PT, Wright EJ, Goldstein M. Incidence and postoperative outcomes of accidental ligation of the testicular artery during microsurgical varicocelectomy. J Urol 2005;173:482–4. [CrossRef]
  • 33. Süer E, Yaman Ö. Varikoselin Tedavi Endikasyonları, Tedavi Yöntemleri, Prognostik Faktörler ve Komplikasyonları. İçinde: Aşcı R, Çayan S, Erdemir F, Orhan İ, Yaman Ö, Usta MF, Kendirci M, Ekmekçioğlu O, Kadıoğlu A, editörler. Erkek Üreme Sistemi Hastalıkları ve Tedavisi. İstanbul: İstanbul Medikal Yayıncılık; 2013. p.601–14. https://www.androloji.org.tr/androlojiDATA/ tadYayinlari/Erkek-Ureme-Sistemi-Hastaliklari-ve-Tedavisi.pdf
  • 34. Esteves SC, Miyaoka R, Roque M, Agarwal A. Outcome of varicocele repair in men with nonobstructive azoospermia: systematic review and meta-analysis. Asian J Androl 2016;18:246– 53. [CrossRef]
  • 35. Hassan A, el-Nashar EM, Mostafa T. Programmed cell death in varicocele-bearing testes. Andrologia 2009;41:39–45. [CrossRef]
  • 36. Tawadrous GA, Aziz AA, Mostafa T. Seminal soluble fas relationship with oxidative stress in infertile men with varicocele. Urology 2013;82:820–3. [CrossRef]
  • 37. Krzysciak W, Kozka M. Generation of reactive oxygen species by a sufficient, insufficient and varicose vein wall. Acta Biochim Pol 2011;58:89–94. [CrossRef]
  • 38. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol 2013;10:26–37. [CrossRef]
  • 39. Agarwal A, Prabakaran S, Allamaneni SSSR. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online 2006;12:630–3. [CrossRef]
  • 40. Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int 2008;101:1547–52. [CrossRef]
  • 41. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ Jr. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 2003;80:1431–6. [CrossRef]
  • 42. Zhang R, Zuo Y, Cao S. Upregulated microRNA-423–5p promotes oxidative stress through targeting glutathione S-transferase mu 1 in asthenozoospermia. Mol Reprod Dev 2021;88:158–66. [CrossRef]
  • 43. Alves MBR, de Arruda RP, Batissaco L, Garcia-Oliveros LN, Gonzaga VHG, Nogueira VJM, et al. Changes in miRNA levels of sperm and small extracellular vesicles of seminal plasma are associated with transient scrotal heat stress in bulls. Theriogenology 2021;161:26–40. [CrossRef]
  • 44. Mostafa T, Rashed LA, Nabil NI, Osman I, Mostafa R, Farag M. Seminal miRNA Relationship with Apoptotic Markers and Oxidative Stress in Infertile Men with Varicocele. Biomed Res Int 2016;2016:4302754. [CrossRef]
  • 45. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 2011;57:1722–31. [CrossRef]
  • 46. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci USA 2012;109:490–4. [CrossRef]
  • 47. Liu T, Cheng W, Gao Y, Wang H, Liu Z. Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Mol Med Rep 2012;6:535–42. [CrossRef]
  • 48. Ning JZ, Rao T, Cheng F, Yu WM, Ruan Y, Yuan R, et al. Effect of varicocelectomy treatment on spermatogenesis and apoptosis via the induction of heat shock protein 70 in varicoceleinduced rats. Mol Med Rep 2017;16:5406–12. [CrossRef]
  • 49. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online 2015;31:309–19. [CrossRef]
  • 50. Razi M, Tavalaee M, Sarrafzadeh-Rezaei F, Moazamian A, Gharagozloo P, Drevet JR, Nasr-Eshafani MH. Varicocoele and oxidative stress: New perspectives from animal and human studies. Andrology 2021;9:546–58. [CrossRef]
  • 51. Wu T-Y, Leng Q, Tian L-Q. The microRNA-210/Casp8ap2 Axis Alleviates Hypoxia-Induced Myocardial Injury by Regulating Apoptosis and Autophagy. Cytogenet Genome Res 2021;161:132– 42. [CrossRef]
  • 52. Hino Y, Rahman MM, Lai Y-C, Husna AA, Chen H-W, Hasan N, et al. Hypoxic miRNAs expression are different between primary and metastatic melanoma cells. Gene 2021;782:145552. [CrossRef]
  • 53. Xu Y-W, Ou N-J, Song Y-X, Wang X-H, Kang J-Q, Yang Y-J, et al. Seminal plasma miR-210-3p induces spermatogenic cell apoptosis by activating caspase-3 in patients with varicocele. Asian J Androl 2020;22:513–8. [CrossRef]
  • 54. Duan Z, Huang H, Sun F. The functional and predictive roles of miR-210 in cryptorchidism. Sci Rep 2016;6:32265. [CrossRef]
  • 55. Tang D, Huang Y, Liu W, Zhang X. Up-Regulation of microRNA-210 is Associated with Spermatogenesis by Targeting IGF2 in Male Infertility. Med Sci Monit 2016;22:2905–10. [CrossRef]
  • 56. Ma Y, Zhou Y, Xiao Q, Zou SS, Zhu YC, Ping P, Chen XF. Seminal exosomal miR-210–3p as a potential marker of Sertoli cell damage in Varicocele. Andrology 2021;9:451–9. [CrossRef]
  • 57. Ou N, Song Y, Xu Y, Yang Y, Liu X. Identification and verification of hub microRNAs in varicocele rats through high-throughput sequencing and bioinformatics analysis. Reprod Toxicol 2020;98:189–99. [CrossRef]
  • 58. Xu Y, Zhang Y, Yang Y, Liu X, Chen Y. Seminal plasma miR-210- 3p is a biomarker for screening dyszoospermia caused by varicocele. Andrologia 2019;51:e13244. [CrossRef]
  • 59. Trigo RV, Bergada I, Rey R, Ballerini MG, Bedecarras P, Bergada C, et al. Altered serum profile of inhibin B, Pro-alphaC and anti-Mullerian hormone in prepubertal and pubertal boys with varicocele. Clin Endocrinol (Oxf) 2004;60:758–64. [CrossRef]
  • 60. Van Batavia JP, Lawton E, Frazier JR, Zderic SA, Zaontz MR, Shukla AR, et al. Total Motile Sperm Count in Adolescent Boys with Varicocele is Associated with Hormone Levels and Total Testicular Volume. J Urol 2021;205:888–94. [CrossRef]
  • 61. Chen Z, Gao Y, Gao S, Song D, Feng Y. MiR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Kruppel-like factor 4(KLF4). Arch Med Sci 2020;16:167–76. [CrossRef]
  • 62. Jiang J, Xia Y, Liang Y, Yang M, Zeng W, Zeng X. miR-190a5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension. Int J Chron Obstruct Pulmon Dis 2018;13:3777–90. [CrossRef]
  • 63. Yu Y, Zhang D, Huang H, Li J, Zhang M, Wan Y, et al. NFkappaB1 p50 promotes p53 protein translation through miR190 downregulation of PHLPP1. Oncogene 2014;33:996–1005. [CrossRef]
  • 64. Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, et al. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017;8:66709–27. [CrossRef]
  • 65. Zhu Z, Li C, Yang S, Tian R, Wang J, Yuan Q, et al. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation. Sci Rep 2016;6:19069. [CrossRef]
  • 66. Ji Z, Lu R, Mou L, Duan YG, Zhang Q, Wang Y, et al. Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele. Reproduction 2014;147:693–701. [CrossRef]
  • 67. Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 2009;315:2941–52. [CrossRef]
  • 68. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008;105:5166–71. [CrossRef]
  • 69. Yue J, Tigyi G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome 2010;21:88–94. [CrossRef]
  • 70. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 2009;130:731–41. [CrossRef]
  • 71. Li G, Qiu Z. Deletion of miR-15 Protects Against Rheumatoid Arthritis via Deregulating its Target Gene BCL2L2 and Repressing NF-kappaB Pathway. Ann Clin Lab Sci 2019;49:581–9. https:// pubmed.ncbi.nlm.nih.gov/31611200/
  • 72. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012;148:1172–87. [CrossRef]
  • 73. Ashrafzade AM, Sadighi Gilani MA, Topraggaleh TR, Khojasteh M, Sepidarkish M, Borjian Boroujeni P, Zamanian MR. Oxidative stress-related miRNAs in spermatozoa may reveal the severity of damage in grade III varicocele. Andrologia 2020;52:e13598. [CrossRef]
  • 74. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2(Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 2005;73:427–33. [CrossRef]
  • 75. Guo W, Xie B, Xiong S, Liang X, Gui JF, Mei J. miR-34a Regulates Sperm Motility in Zebrafish. Int J Mol Sci 2017;18:2676. [CrossRef]
  • 76. Sharma A, Lagah SV, Nagoorvali D, Kumar BSB, Singh MK, Singla SK, et al. Supplementation of Glial Cell Line-Derived Neurotrophic Factor, Fibroblast Growth Factor 2, and Epidermal Growth Factor Promotes Self-Renewal of Putative Buffalo (Bubalus bubalis) Spermatogonial Stem Cells by Upregulating the Expression of miR-20b, miR-21, and miR-106a. Cell Reprogram 2019;21:11–7. [CrossRef]
Androloji Bülteni-Cover
  • ISSN: 2587-2524
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1999
  • Yayıncı: Turgay Arık
Sayıdaki Diğer Makaleler

Non-obstruktif azoospermide micro-TESE: Önemli yenilikler

Barış ALTAY, Kasım Emre ERGÜN

Varikosel ile ilişkili infertilite patofizyolojisinde mikroRNA’ların rolü

Sezgin GÜNEŞ, Sercan ERGÜN, Neslihan HEKİM

Distal hipospadias nedeniyle uygulanan operasyon prosedürlerinin erişkin dönem seksüel fonksiyonlara etkisi

Çağrı ŞENOCAK, Ömer Faruk BOZKURT, Kubilay SARIKAYA, Fahri Erkan SADİOĞLU, Muhammed Arif İBİŞ

Prematür ejakülasyon: Güncel tedavi ve gelecek

Erhan ATEŞ, Hakan Görkem KAZICI

Polikistik over sendromunda androjen seviyeleri ve seksüel disfonksiyon

Pınar KADIOĞLU, Rümeysa Selvinaz EROL

Üreter taşı için üreterorenoskopik cerrahi yapılan erkek ve kadın hastalarda JJ stent yerleştirilmesinin seksüel fonksiyonlar üzerine etkisi

Arif KALKANLI, Cem Tuğrul GEZMİŞ

Erektil disfonksiyon ve/veya prematüre ejakülasyon tanısı alan erkeklerde çift uyumunu yordayan değişkenler nelerdir? Cinsiyet rolleri, depresyon, anksiyete, stres, kişilik özellikleri ve benlik saygısı

Halil BASAR, Özden YALÇINKAYA ALKAR, Gökay ATA, Fatih HIZLI

Gençlerin gebelikte cinselliğe ilişkin yanlış bilgi, tutum ve inançları

Feyza AKTAŞ REYHAN, Elif DAĞLI

İnfertilitenin kültürel, ekonomik, psikososyal ve cinsel yönüne güncel bir bakış: Temel hemşirelik yaklaşımları

Ebru ŞAHİN, Hüsne YÜCESOY, Fatma YILDIRIM

Engelli kadınlarda üreme sağlığı sorunları ve hemşirelik yaklaşımı

Fatma YILDIRIM, Mevlüde ALPASLAN ARAR, Nilüfer ERBİL