Toprak biliminde kızıl ötesi spektrometrenin potansiyel kullanımı

Hassas tarım tekniklerinin uygulanması, küresel olarak toprakta karbon zenginleşmesinin gözlemlenmesi ve toprak kalitesinin sürdürülebilirliğini sağlayacak toprak özelliklerinin daha hızlı belirlenebileceği, ucuz ve güvenilir yöntemlere olan gereksinim sürekli artmaktadır. Toprakların fiziksel, kimyasal, biyolojik ve mineralojik özelliklerinin mevcut laboratuar yöntemler ile belirlenmesi pahalı ve oldukça zaman ve işçilik gerektirdiği gibi, analiz için kullanılan güçlü kimyasalların atıkları çevreye zarar verebilmektedir. Geleneksel olarak kullanılan laboratuar yöntemlerine alternatif olarak son zamanlarda yaygın bir şekilde kullanılmaya başlanan dağılmış yansıma spektroskopi (morötesi, görülebilir, yakın kızıl ötesi ve orta kızıl ötesi) tekniği, pH, organik karbon, su içeriği, parçacık büyüklük dağılımı, katyon değişim kapasitesi, değişebilir katyonlar, kil mineralojisi ve daha bir çok toprak özelliğinin hızlı bir şekilde belirlenmesine olanak vermektedir. Yansıma özelliklerinden gidilerek toprak özelliklerinin belirlenmesinde gelişmiş istatistiksel yöntemlerden faydalanılmaktadır. Çoklu regresyon analizi, temel bileşenler analizi, kısmi en az-karelerin regresyonu ve sinir ağları kalibrasyonu yaygın olarak kullanılan yöntemlerdir. Toprak özelliklerinin bozulmadan, yerinde incelenebilmesine olanak veren taşınabilir spektroskopi cihazları, arazideki değişkenliğin daha güvenilir şekilde incelenmesine olanak tanımaktadır. Tüm bu avantajlarının yanında, spektroskopik yöntemlerin doğruluğu kalibrasyona ve kullanılan referans metodun hassasiyeti ve doğruluğuna oldukça bağlıdır. Bu nedenle aletin kalibrasyonunda doğruluğu kabul edilmiş olan referans metotların kullanılması kaçınılmazdır.

The potential use of infrared spectroscopy in soil science

Application of precision agriculture techniques, monitoring of carbon sequestration in soils throughout the world and sustaining the soil quality require reliable, fast and cheap soil analysis techniques. The determination of soil physical, chemical, biological and mineralogical characteristics with conventional laboratory analysis can be great time and labor consuming and expensive. The waste of strong chemicals used in soil analysis is hazardous to environment. Diffuse reflectance spectroscopy (ultraviolet, visible, near infrared, mid infrared) as an alternative to conventional laboratory methods has been recently used to determine soil characteristics (soil pH, organic carbon, water content, particle size distribution, cation exchange capacity, exchangeable cations, clay mineralogy and many others) rapidly and inexpensively. Spectroscopic methods require the development of calibrations that relate the spectral information to the property of interest using several statistical methods. Multiple regression analysis, principal component analysis, partial least square regression and neural network are the commonly used multivariate statistical procedures. Portable spectroscopy equipments allow in situ characterization of soil characteristics; thereby variability of soil properties can be also determined in the field. Furthermore, the accuracy of spectroscopic techniques depends on the calibration and the precision and accuracy of the reference method. Therefore, reliable analytical methods need to be used in calibration of spectroscopic technique used in the analysis.

___

  • Anonim. 2007. Rapid Soil Analysis Services. www.clw.csiro.au/services/ 19 şubat 2007.
  • Ben-Dor, E., Banin, A., 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal. 59:364– 372.
  • Bogrekci I, Lee W.S. , 2005. Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement Source: Transactions of the ASAE 48,5: 1971-1978.
  • Bogrekci, I., Lee, W.S., 2006. Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV-VIS-NIR. Spectroscopy. Transactions of the ASAE 49,4: 1175- 1180.
  • Brown, D.J., K.D. Shepherd, M.G. Walsh, M. D. Mays, T.G. Reinsch. 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy Geoderma 132:273–290.
  • Chang, C.-W., Laird, D.A., Mausbach, M.J., Hurburgh Jr., C.R., 2001. Near-infrared reflectance spectroscopy— principal components regression analysis of soil properties. Soil Sci. Soc. of Am. J. 65:480–490.
  • Cohen, M.J., J.P. Prenger, W.F. DeBusk. 2005. Visible-Near Infrared Reflectance Spectroscopy for Rapid, Nondestructive Assessment of Wetland Soil Quality J. Environ. Qual. 34:1422-1434.
  • Cozzolino, D., Moron, A., 2003. The potential of nearinfrared reflectance spectroscopy to analyze soil chemical and physical characteristics. J. Agric. Sci. 140:65–71.
  • Daniel, K.W., Tripathi, N.K., Honda, K., 2003. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand).Australian Journal of Soil Research 41:47–59.
  • Dematte, J.A.M., Campos, R.C., Alves, M.C., Fiorio, P.R., Nanni, M.R.,2004. Visible-NIR reflectance for soil evaluation. Geoderma 121:95-112.
  • Gündüz, T. 2002. İnstrumental Analiz. 6. Baskı. Bilge Yayıncılık. Ankara.
  • Hummel, J.W., K.A., Sudduth, S.E., Hollinger. 2001. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agri. 32:149–165
  • Islam, K., A. McBratney, B. Singh. 2005. Rapid estimation of soil variability from the convex hull biplot area of topsoil ultra-violet, visible and near-infrared diffuse reflectance spectra. Geoderma 128:249–257.
  • Islam, K., B. Singh, A. McBratney, 2003. Simultaneous estimation of various soil properties by ultra-violet, visible and near-infrared reflectance spectroscopy. Australian Journal of Soil Research 41:1101–1114.
  • Kılıç, E., Köseoğlu, F., Yılmaz, H. (Çeviri Editörleri). 1998. Enstrümental Analiz İlkeleri. Bilim Yayıncılık. Ankara.
  • Lobell, D.B., G. Asner. 2002. Moisture effect on soil reflectance. Soil Sci. Soc. Am. J. 66 :722-725.
  • Madari, B.E., J.B. Reeves III, P.L.O.A. Machado, C.L. Guimares, E. Torres, G.W. McCarthy. 2006. Mid- and Near infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferrasols. Geoderma. 136:1-2, 245-259.
  • McBratney, A.B., B. Minasny, R. Viscarra Rossel. 2006. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis Geoderma. 136, 1-2:272-278.
  • McCarty, G.W., J.B. Reeves III, V.B. Reeves, R.F. Follet, J.M. Kimble. 2002. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66:640–646.
  • Mouazen, A.M., R. Karoui, J. De Baerdemaeker, H. Ramon.2005. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminate analysis techniques. J. Near Infrared Spectroscopy. 13:231-240.
  • Mouazen, A.M., R. Karoui, J. De Baerdemaeker, H. Ramon. 2006. Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra. Soil Sci. Soc. of Am. J. 70:1295-1302.
  • Mouazen, A.M., M.R. Maleki, J. De Baerdemaeker, H. Ramon. 2007. On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil & Tillage Research. 93:1,13-27.
  • Pasquini, C., 2003. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. Vol. 14:2, 198-219.
  • Reeves III J.B., G.W. McCarty, R.F. Follett, J.M. Kimble. 2006. The potential of spectropic methods for rapid analysis of soil samples. Carbon Sequestration in Soils of Latin America. Harword Press Publ. Inc. p. 423-442.
  • Odlare, M., Svensson, K., Pell, M., 2005. Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma 126:193– 202.
  • Sørensen, L.K., S.Dalsgaard, 2005. Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy Soil Science Society of America Journal. 69:159-167.
  • Shepherd, K.D., Walsh, M.G., 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. of Am. J. 66:988– 998.
  • Shepherd, K.D., Walsh, M.G., 2004. Diffuse reflectance spectroscopy for rapid soil analysis. In: Lal, Rattan (Ed.), Encyclopedia of Soil Science. Published online by Marcel Dekker 04/26/2004.
  • http://www.dekker.com/servlet/product/DOI/ 101081EESS120017436. [Ulaşım 30 Haziran 2006].
  • Vågen, T.-G., K. D. Shepherd, M.G. Walsh. 2006. Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy Geoderma 133:281–294.
  • Velasqueza, E., Lavellea, P., Barrios, E., Joffre, R., Reversat, F. 2005. Evaluating soil quality in tropical agroecosystems of Colombia using NIRS Soil Biology & Biochemistry 37: 889–898.
  • Viscarra Rossel, R.A., D.J.J. Walvoort, A.B. McBratney, L.J. Janik, J.O. Skjemstad 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties Geoderma 131:1-2, 59-75.
  • Wetzel, D.I., 1983. Infrared reflectance analysis: sleeper among spectroscopic techniques. Analytical Chemistry 55:1165–1176.