Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD)

Hava giriş ve çıkış açıklıklarının alanları, konumları, giriş ve çıkış açıklıkları arası yükseklik farkı, rüzgar yönü, sera geometrisi ve serada yetiştirilen bitki çeşidi gibi birçok faktör havalandırma sisteminin planlanmasında etkili olmaktadır. Bu çalışmada havalandırma sistemlerinin etkisini değerlendirebilmek amacıyla farklı yan duvar yüksekliğine, havalandırma giriş çıkış açıklıklarına ve sera çatı şekillerine sahip beş farklı özellikte plastik sera kullanılmış ve bu sera modelleri ile bölgede kullanılan tipik sera modeli karşılaştırılmıştır. Çalışmada kullanılan tüm sera modellerinin iç çevre koşulları (hava akış hızı ve sıcaklık dağılımları) ve hava değişim oranları Hesaplamalı Akışkanlar Dinamiği (HAD) ile değerlendirilmiştir. Simülasyonlardaki tüm koşullar için dış hava hızı 0.5, 1 ve 2 ms-1 olarak belirlenmiştir. Sera içi etkili havalandırma sisteminin çözümünde HAD’nin “FLUENT” yazılım programından yararlanılmıştır. Çözümde ise türbülans modeli olarak k-ɛ Renormalization Group (RNG) türbülans modeli kullanılmıştır

Hesaplamalı akışkanlar dinamiği (HAD) kullanılarak farklı sera modellerindeki sıcaklık dağılımının değerlendirilmesi

Areas of air inlet and outlet openings, orientation of openings, height difference between air inlet and outlet openings, wind direction, greenhouse geometry, and type of plant grown are among the many factors that should be taken into consideration in designing an effective ventilation system for greenhouses. In this study, five different model plastic greenhouses with different sidewall heights, air inlet and outlet opening areas and roof shapes were used to evaluate the ventilation efficiencies and they were compared with a conventional type of the region. A computational fluid dynamics (CFD) program was used to evaluate the behavior of the internal environment (internal flow rate and temperature distributions) and natural ventilation rates for all model greenhouses and a conventional greenhouse involved in the study. External wind speeds of 0.5, 1, and 2 ms-1 were used in the simulations for all conditions. The results of simulations and experimental studies were evaluated and used for recommendation of a better greenhouse model for this region. CFD software “FLUENT” was used to determine the effectiveness of greenhouse ventilation system and k-ɛ Renormalization Group (RNG) turbulence model was used in solutions.

___

  • Abel, R., Monteiro, E., 2007. Computational fluid dynamics analysis of greenhouse microclimates by heated underground tubes. Journal of Mechanical Science and Technology. 21: 2196-2204.
  • Anonymous, 2008. Heating Ventilating and Cooling Greenhouses. American Society of Agricultural and Biological Engineers Standards, ASABE.
  • Bot, GPA., 1983. Greenhouse climate: from physical processes to dynamic model. PhD Dissertation, Agricultural University of Wageningen, Netherland.
  • Boulard, T., 1993. Etude experimentale et modélisation de 1’ aération naturelle des serres (experimetal study and modelling of greenhouse natural ventilation). Récapitulation des résultats des études conduites de 1988 B 1992. Note Interne I.N.R.A. 93-1; Station de Bioclimatologie de Montfavet 84140 France. (in French).
  • Boulard, T., Baille, A., 1995. Modelling of Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents. Journal of Agricultural Engineering Research, 61 (1):37- 47.
  • Boulard, T., Draoui, B., 1995. Natural ventilation of ventilation of a greenhouse with continuous roof vents: measurements and data analysis. Journal of Agricultural Engineering Research, 61:27-35.
  • Boulard, T., Fatnassi, H., Roy, JC., Lagier, J., Fargues, J., Smits, N., Rougier, M., Jeannequin, B., 2004. Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agricultural and Forest Meteorology, 125 (3-4): 225-239.
  • Businger, J.A., 1954. De invloed van raamstanden op de ventilatie in kassen. (The influence of window openings on the ventilation of greenhouse) Meded. Dir. Tuinbouw (Netherlands.). 17: 897 (in Dutch).
  • Cemek, B., Güler, M., Arslan, H., 2015. Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey. Theoretical and Applied Climatology, doi:10.1007/s00704-015-1686-5
  • Chen, Y.S., Kim, S.W., 1987. Computation of turbulent flows using an extended k-ɛ model. NASA Contractor Report. NASA-Marshall Space Flight Center Marshall Space Flight Center, Alabama.
  • De Jong, T., 1989. Natural ventilation of long multi-span greenhouses. Ph.D. thesis, Agricultural University of Wageningen. Wageningen, Nederland.
  • Fernandez, J.E., Bailey, B.J., 1992. Measurements and prediction of greenhouse ventilation rates. Agricultural and Forest Meteorology, 58 (3-4): 229-245.
  • Hellickson, M.A., Walker, J.N., 1983. Ventilation of agricultural structures. American Society of Agricultural Engineers, Michigan. pp.257-300.
  • IEA, 1992. Energy conservation in building sand community systems programme. Annex 20: Air flow patterns within buildings. Air flow through large openings on buildings. Technical report edited by J. Van der Maas.
  • Kacira, M., Sase, S., 2004. Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind induced ventilation. Transactions of the ASAE, 47(6): 2059-2067.
  • Kittas, C., Boulard, T., Mermier, M., Papadakis, G., 1996. Wind-Induced Air Exchange-Rates in A Greenhouse Tunnel with Continuous Side Openings. Journal of Agricultural Engineering Research, 65(1):37–49.
  • Launder, B.E., Spalding, D.B., 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2): 269-289.
  • Lawrence, W.J.C., Whittle, R.M., 1960. The climatology of glasshouses. II: Ventilation. Journal of Agriculture Engineering Research, 5: 36-41.
  • Mistriotis, A., Bot, G.P.A., Picuno, P., Scarascia Mugnozza, G., 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology, 85 (3-4): 217-228.
  • Morris, L.G., Neale, F.E., 1954. The infrared carbon dioxide gas analyzer and its use in glass house research. National Institute of Agricultural Engineering, Silsoe, Tech. Memo. 99, p.13.
  • Nebbali, R., Roy, J.C., Boulard, T., 2012. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse. Renewable Energy, 43: 0960-1481.
  • Nederhoff, E.M., van de Vooren, J., Udink ten Cate, A.J., 1985. A practical tracer gas method to determine ventilation in greenhouses. Journal of Agricultural Engineering Research. 31 (4): 309-319.
  • Norton, T., Sun, DW., Grant, J., Fallon, R., Dodd, V., 2002. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review, Bioresource Technology, 98(12): 2386-2414.
  • Okada, M., Takakura, T. 1973. Guide and data for greenhouse air conditioning. 3. heat loss due to air infiltration of heated greenhouse. Journal of Agricultural Meteorology, 28 (4): 223-230.
  • Okushima, L., Sase, S., Nara, M., 1989. A support system for natural ventilation design of greenhouse based on computational aerodynamics. Acta Horticulturae, 248: 129-136.
  • Papadakis, G., Mermier, M., Meneses, J.F., Boulard, T., 1994. Measurement and analysis of air Exchange rates in a greenhouse with continuous roof and side openings. Journal of Agriculture Engineering Research, 63: 219- 228.
  • Patankar, S.V., 1980. Numerical heat transfer and fluid flow. Hemisphere, New York.
  • Reichrath, S., Davies, T.W., 2002. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse. Journal of Wind Engineering and Industrial Aerodynamics, 90: 139-149.
  • Sase, S., Takakura, T., Nara, M., 1984. Wind tunnel testing on air flow and temperature distribution of a naturally ventilated greenhouse. Acta Horticulturae, 148, 329-336.
  • Sevila, F., Feuilloley, P., Mekikdijan, C., 1992. Natural ventilation of greenhouses on Mediterranean areas. XI CIGR World Congress and Agency 92 Conference on Agricultural Engineering, Uppsala, Sweden, 1-4 June.
  • Von Zabeltitz, C., 2011. Integrated greenhouse systems for mild winter climates: climatic conditions, design, construction, maintenance and climate control. SpringerVerlag, Berlin
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

Çelikli Havzası arazisinin detaylı toprak etüt, haritalama ve sınıflandırılması

Ertuğrul KARAŞ, İrfan OĞUZ, Rasim KOÇYİĞİT

Tuz stresi altindaki biber (Capsicum Annuum L.) bitkisinde bazi organik ve inorganik bileşiklerin antioksidatif sisteme etkileri

Atilla Levent Tuna, Büşra Eroğlu

Aluviyal araziler üzerinde oluşmuş farklı toprakların uygun toprak işleme durumlarının belirlenmesi

Orhan DENGİZ, Fatma Esra GÜRSOY, Mustafa SAĞLAM

Elma (malus communıs l) yetiştiriciliğinde enerji girdi-çıktı analizi: Tekirdağ ili örneği

İlker H. Çelen, Mehmet Fırat Baran, Eray Önler, Yılmaz Bayhan

Destekleme politikalarının Türkiye'deki tarımsal etkinlik ve toplam faktör verimliliğine etkileri

Nevra Alhas Eroğlu, Mehmet Bozoğlu

Samsun ili Bafra ilçesinde sulama birliği çiftçi ilişkileri ve çiftçilerin sulama suyu kullanım karakteristikleri

Esin HAZNECİ, Halil KIZILASLAN

Karacadağ’ın farklı yükseltilerindeki meraların durumu ve ot kalitesinin belirlenmesi

Ali Aydın, Mehmet Başbağ

Pestisit klorprifosun neden olduğu testis doku hasarı üzerine kurkuminin antioksidan etkisinin ışık mikroskobik olarak incelenmesi

Banu EREN, Sevcan MERCAN, Nazan DİNÇ

Organik düzenleyici uygulamalarının yapay yağış koşulları altında toprak kaybı üzerine etkileri

Nutullah ÖZDEMİR, Elif ÖZTÜRK, Ömrüm Tebessüm KOP DURMUŞ

Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD)

Bilal CEMEK, Aslıhan ATİŞ, Erdem KÜÇÜKTOPÇU