Aronia (Aronia melanocarpa) Bitkisinin Yaprak Dokusundan Katalaz Enziminin Karakterizasyonu

Aronia, dünya çapında yaygın olarak bulunan en çok antioksidan içeren bitkilerden biridir. Türkiye'de ilk kez 2012 yılında Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü'nde Aronia yetiştiriciliğine başlanmış ve deneme alanına ağaçlandırma yapılmıştır. Antioksidanlar, oksidasyon süreçlerini bloke ederek ve çok sayıda diyet takviyesi, nutrasötik ve fonksiyonel gıda katkı maddesi tarafından sağlanan sağlığın önemine katkıda bulunarak gıdaların korunmasına yardımcı olduklarından, bu bitkilerin antioksidan kapasiteleri iyi karakterize edilmelidir. Gıdaların ve bitkisel ürünlerin antioksidan içeriğini değerlendirmek ve belirlemek için birçok yaklaşım kullanılmaktadır. Bu çalışmada aronia bitkisinin yaprak dokusundan katalaz (CAT) enzimi kısmen saflaştırılmış ve karakterizasyonu yapılmıştır. Saflaştırma işlemi, homojenat hazırlama, amonyum sülfat çökeltme ve diyalizden oluşmaktadır. Optimum iyonik kuvvet, pH, substrat konsantrasyonu ve enzim miktarı incelenmiştir. Bu değerler Aronia bitki yaprak dokusunun katalaz enzimi için sırasıyla 300 mM Tris, pH:8.0, 12 mM H2O2 ve 75 µl olarak bulunmuştur. Bu çalışma Aronia bitkisinden elde edilen antioksidan enzimin karakterizasyonu ile ilgili literatürdeki ilk çalışmadır.

Characterization of Catalase Enzyme from Leaf Tissue of Aronia (Aronia melanocarpa) Plant

Aronia is among the most antioxidant containing plants which is found commonly around the world. Aronia cultivation started in Turkey for the first time in 2012 at the Atatürk Central Research Institute of Garden Cultures, and a plantation was constructed in the experimental area. Since antioxidants help to preserve food by blocking oxidation processes and contributing to the health promotion provided by numerous dietary supplements, nutraceutical and functional food additives, antioxidant capacity of these plants should be well characterized. To assess and evaluate the antioxidant content of foods and plant products, many approaches are utilized. In this study, catalase (CAT) enzyme was partially purified from aronia plant leaf tissue and characterization was carried out. Purification process consisted of homogenate preparation, ammonium sulfate precipitation and dialysis. The optimal ionic strength, pH, substrate concentration and enzyme quantity were examined. These values were found to be 300 mM Tris, pH:8.0, 12 mM H2O2 and 75 μl, respectively, for the catalase enzyme of the Aronia plant leaf tissue. This study is the first in the literature dealing with the characterization of antioxidant enzyme from Aronia plant.

___

  • Adnan, A. M., & GhalebAL-Dabbagh, R., 2018. Examination Of Catalase Enzyme In Green Cabbage And Some Characters Of It. European Journal of Sport Sciences and Public Health, 5, 1.
  • Aydemir, T., Kuru, K., 2003. Purification and partial characterization of catalase from chicken erythrocytes and the effect of various inhibitors on enzyme activity. Turkish Journal of Chemistry, 27(1), 85-98.
  • Azevedo Neto, A. D. D., Prisco, J. T., Enéas-Filho, J., Lacerda, C. F. D., Silva, J. V., Costa, P. H. A. D., & Gomes-Filho, E., 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 16, 31-38.
  • Benvenuti, S., Pellati, F., Melegari, M. A., & Bertelli, D., 2004. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of food science, 69(3), 164-169.
  • de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., de Abreu, C. E. B., & Gomes-Filho, E., 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87-94.
  • Dinçler, A., Aydemir, T., 2001. Purification and characterization of catalase from chard (Beta vulgaris var. cicla). Journal of enzyme inhibition, 16(2), 165-175.
  • Do Thi, N., Hwang, E. S., 2014. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Preventive nutrition and food science, 19(3), 204.
  • Gawron-Gzella, A., Dudek-Makuch, M., & Matlawska, I., 2012. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biologica Cracoviensia. Series Botanica, 54(2).
  • Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Blandizzi, C., & Antonioli, L., 2018. Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review. Nutrition Research Reviews, 31(2), 239-247.
  • Guven, H., Arici, A., & Simsek, O., 2019. Flavonoids in our foods: a short review. Journal of Basic and Clinical Health Sciences, 3(2), 96-106.
  • Halliwell, B., & Gutteridge, J. M., 2015. Free radicals in biology and medicine. Oxford university press, USA. Hawkins, J., Hires, C., Baker, C., Keenan, L., & Bush, M., 2021. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. Journal of dietary supplements, 18(5), 517-530.
  • Jakobek, L., Šeruga, M., Medvidović-Kosanović, M., & Novak, I., 2007. Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agriculturae Conspectus Scientificus, 72(4), 301-306.
  • Jurikova, T., Mlcek, J., Skrovankova, S., Sumczynski, D., Sochor, J., Hlavacova, I., Snopek, L., & Orsavova, J. 2017. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules, 22(6), 944.
  • Kandukuri, S. S., Noor, A., Ranjini, S. S., & Vijayalakshmi, M. A., 2012. Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds. Journal of Chromatography B, 889, 50-54.
  • Kardum, N., Takić, M., Šavikin, K., Zec, M., Zdunić, G., Spasić, S., & Konić-Ristić, A.. 2014. Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women. Journal of Functional Foods, 9, 89-97.
  • Mittler, R., 2017. ROS are good. Trends in plant science, 22(1), 11-19.
  • Nadeem, S. M. S., Khan, J. A., Murtaza, B. N., Muhammad, K., & Rauf, A., 2015. Purification and properties of liver catalase from water buffalo (Bubalus bubalis). South Asian Journal of Life Sciences, 3(2), 51-55.
  • Nakamura, K., Watanabe, M., Sasaki, Y., & Ikeda, T., 2000. Purification and characterization of liver catalase in acatalasemic beagle dog: comparison with normal dog liver catalase. The International Journal of Biochemistry & Cell Biology, 32(1), 89-98.
  • Nakano, T., Watanabe, M., Sato, M., & Takeuchi, M. 1995. Characterization of catalase from the seaweed Porphyra yezoensis. Plant Science, 104(2), 127-133.
  • Oszmiański, J., & Wojdylo, A., 2005. Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809-813.
  • Pirvu, L., Hlevca, C., Nicu, I., & Bubueanu, C., 2014. Comparative studies on analytical, antioxidant, and antimicrobial activities of a series of vegetal extracts prepared from eight plant species growing in Romania. JPC-Journal of Planar Chromatography-Modern TLC, 27(5), 346-356.
  • Sharma, I., Ahmad, P., 2014. Catalase: a versatile antioxidant in plants. In Oxidative damage to plants (pp. 131-148). Academic Press.
  • Sies, H., Jones, D. P., 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews Molecular cell biology, 21(7), 363-383.
  • Smirnoff, N., Arnaud, D., 2019. Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197-1214.
  • Susmitha, S., Ranganayaki, P., Vidyamol, K. K., & Vijayaraghavan, R., 2013. Purification and characterization of catalase enzyme from Agaricus bisporus. International Journal of Current Microbiology, 2(12), 255-263.
  • Taheri, R., Connolly, B. A., Brand, M. H., & Bolling, B. W., 2013. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of agricultural and food chemistry, 61(36), 8581-8588.
  • Tsuda, T., 2012. Dietary anthocyanin‐rich plants: biochemical basis and recent progress in health benefits studies. Molecular nutrition & food research, 56(1), 159-170.
  • Waszczak, C., Carmody, M., & Kangasjärvi, J., 2018. Reactive oxygen species in plant signaling. Annual review of plant biology, 69, 209-236.
  • Williamson, G., Kay, C. D., & Crozier, A., 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054-1112.
  • Yoruk, I. H., Demir, H., Ekici, K., & Sarvan, A., 2005. Purification and properties of catalase from Van Apple (Golden Delicious). Pakistan Journal of Nutrition, 4(1), 8-10.