Anamateryal ve arazi kullanım şeklinin topraktaki bazı mikroelement fraksiyonlarının dağılımına etkileri

Bu araştırma, ana materyal ve arazi kullanım şeklinin topraklardaki mikro element ve fraksiyonlarının (Mn, Fe, Cu ve Zn) dağılımları üzerine etkisini belirlemek amacıyla yürütülmüştür. Araştırma, Erzurum yöresinde yaygın olan dört farklı ana materyal (andezit, allüviyal, jips ve bazalt) ile mera (Pastus), yonca (Medicago Sativa L.), mısır-buğday münavebesi (Zea mays-Triticum aestium) olmak üzere üç farklı arazi kullanım şekli altında bulunan alanlardan alınan toprak örnekleri üzerinde yürütülmüştür. Araştırma konusu topraklar, çoğunlukla tın tekstürlü, organik madde ve kireç içeriği düşük ile orta düzeyde olan, alkalilik problemi bulunmayan topraklardır. Mn, Fe, Cu ve Zn elementleri esas alınarak yapılan değerlendirmede söz konusu elementlerin dağılımının ana materyalin çeşidi ve arazi kullanımından önemli ölçüde etkilendiği belirlenmiştir. Toplam mikro element içerikleri ve fraksiyonlarının dağılımları genellikle andezit ana materyalinden oluşan topraklarda diğerlerinden daha yüksek olarak bulunmuştur. Mikro elementlerin topraklardaki dağılımlarının arazi kullanım şekillerine göre mera > yonca > mısır-buğday münavebesi şeklinde sıralandığı saptanmıştır.

Effects of parent material and land use on distribution of some trace elements fractions in soil

This study has been undertaken in order to find out the effect of various parent material and land use on the distribution of trace elements (Mn, Fe, Cu and Zn) in soils. The investigation was carried out on four groups of parent materials (andesite, alluvial, jibs and basalt) and tree land use (grassland, clover and corn) that are wide spread in Erzurum. Some properties of soils can be summarized as follows; medium in texture, low to medium in organic matter and lime content and free of alkalinity problem. Distribution of Mn, Fe, Cu and Zn were affected by type of parent material and land use, significantly. Distribution of total trace element contents and fractions were found higher in the soils formed andesite parent material. In soil, distribution of total trace elements were ordered as grassland > clover > corn.

___

  • Adriano, D. C., 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York.
  • Black, C. A., 1965. Methods of soil analysis. Parts 1 and 2. Agronomy 9: 572-576, 671-698, 900, 1372-1375. Am. Soc. Argon. Madison, Wis.
  • Chandi, K. S., Takar, P.N., 1982. Effects of agricultural cropping systems on micronutrients transformation. I. Zinc Plant Soil 69: 423-436.
  • Coppenet, M., Golven, J., Simon, J. C, Lecorre, L., Leroy, M., 1993. Chemical evolution of soils in intensive animal-rearing farms. The example of Finistère. Agronomie 13: 77–83.
  • Demiralay, İ., 1993. Toprağın Fiziksel Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, No: 143, Erzurum.
  • Gessler, P.E., Chadwick, O.A., Charman F., Althouse, L., Holmes, K., 2000. Modelling Soil-Landscape and Ecosystem Properties Using Terrain Attributes. Soil Sci. Soc. Of Amer., J. 64:2046-2056.
  • Heil, R. D., Mahmoud, K.R., 1978. Mean concentrations and coefficients of variation of selected trace elements of various soil taxa. pp. 198-213. In: Forest Soils and Land Use, C. T. Youngberg (ed.). Colorado State Univ., Fort Collins, CO.
  • Iyanger, S.S., Martens, D.C., Miller, W.P., 1981. Distribution and plant availability of soil zinc fractions. Soil Sci. Soc. Am. J. 45: 735-739.
  • Kacar, B., 1994. Bitki ve Toprağın Kimyasal Analizleri: III Toprak Analizleri. Ank. Ünv. Ziraat Fak. Eğitim Araştırma ve Geliştirme Vakfı Yay. No: 3, Ankara.
  • Kubota, J. 1981. Role of soil survey trace element studies. pp. 177-186. In: Technical Monograph 1, Soil Research Inventories and Development Planning. Soil Conservation Service, USDA, Washington, D.C.
  • Lal, R., 1988. Soil Erosion Research Methods. Soil and Water Conservation Society, pp: 141-149.
  • Lund, L.J., Betty, E.E., Page, A.L., Elliott, R.A., 1981. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. J.Environ. Qual., 10:551-556.
  • Maskall, J.E., Thornton, I., 1998. Chemical partitioning of heavy metals in soils, clays and rocks at historical lead smelting sites. Water Air Soil Pollut. 108 (1998), pp. 391–409.
  • Miller, W.P., McFee, W.W., Melley, J.M., 1983. Mobility and retention of heavy metals in sandy soils. J. Environ. Qual. 12: 579-584.
  • Munro, R.D., 1983. Environmental research and management priorities for the 1980s. Ambio 12:61–62.
  • Page, A.L., 1974. Fate and effect of trace elements in sewage sludge when applied to agricultural lands. Env. Protection Tech. Series EPA-670/2-74-005.
  • Shuman, L.M., 1986. Effect of liming on the distribution of manganase, copper, iron and zinc among soil fractions. Soil Sci. Soc. Am. J. 50: 1236-1240.
  • Sims, J.L., Patrick Jr W.H., 1978. The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Sci. Soc. Am. J. 42: 258-262.
  • Sims, J.T., 1986. Soil pH Effects on the Distribution and Plant Availability of Zinc, Manganese and Copper Soil. Sci. Am. 367-373.
  • Soil Survey Staff., 1975. Soil Taxonomy. United States Department of Agriculture Handbook, 436, Washington, D.C.
  • Sposito, G., Lund, L.J., Chang, A.C., 1982. Trace metal chemistry in arid-zone soils amended with sewage sludge. 1. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Am. J. 46: 260-264.
  • Walter, I., Cuevas, G., 1999. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. The Science of the Total Environment, Volume 226, Number 2, 9 February 1999, pp. 113-119(7).