Bazı Bitkilerin Rüzgar Erozyonuna Karşı Etkinliğinin Belirlenmesi: Çankırı Örneği

Dünyada rüzgar ile toprak partiküllerinin taşınması ve çökelmesi, çevre için önemli bir işlem olmasının yanı sıra, ciddi boyutlarda çevresel problem olarak da kabul edilmektedir. Atmosferik partiküler madde olarak isimlendirilen ve boyutları 100 mikrometre (µm)’den küçük mineral (toprak kökenli) ve organik (bitki kökenli) partiküllerin atmosferdeki yoğunluğunun artması, önemli sağlık sorunlarına da neden olmaktadır. Tozun engellenmesinde, iki ana yöntem bulunmaktadır. Bunlardan birincisi tozun ana kaynağında yok edilmesi, ikincisi de yapısal ve bitkisel yöntemlerle, rüzgar hızını azaltarak bitki yapraklarının toz tutma özelliğinden yararlanılması ile engellenmesidir. Bu çalışma için Çankırı Karatekin Üniversitesi Uluyazı Kampüsü sınırları içerisinde yer alan alanlarda Robinia pseudoacaccia (Yalancı akasya), Acer negundo (Akçaağaç), Berberis thunbergii (Kadıntuzluğu) ve Ligustrum vulgare (Kurtbağrı) türleri ile dört farklı rüzgar perdesi kurulmuştur. Her bir rüzgar perdesinin önüne ve arkasına hakim rüzgar yönüne 1 ve 30 metre mesafede toplam altışar adet BEST tuzak (Basaran ve Erpul Sediment Tutucu) yerleştirilmiştir. Ölçümler iki yıl süresince Mart-Eylül ayları arasında on beş günlük dönemlerde gerçekleştirilmiştir. Dört farklı rüzgar perdesinin de ciddi şekilde tozu azalttığı belirlenmiş olup, özellikle Acer negundo – Berberis thunbergii ‘den oluşan rüzgar perdesinin 1m arkasında tozun %37’sini, 30m arkasında tozun %40’ını engellediği tespit edilerek, etkinliğinin diğerlerine göre yüksek olduğu hesaplanmıştır. Çalışma sonucunda elde edilen veriler, toz engelleme çalışmalarında bitki seçimi için bir başlangıç olması açısından önemlidir. Çalışma daha sonra yapılacak toz perdesi olarak kullanılabilecek bitki seçimi çalışmalarında yöntem açısından kılavuz niteliğindedir.

Ecological Balance and Human Health in Forested Areas

This study aims to determine the effects of environmental degradation on human health. We reviewed the related literature from environmental and medical science. The most important factors which degrade ecological balance in forested areas are forest fires, excessive and irregular grazing of the animals, obtaining materials for fuel, buildings and paper production and using the land in an unsustainable manner. Decrease of biodiversity by deforestation is a major problem in terms of human communities based on plant and animal species, the vast majority of which are living resources. As a result, CO2 is elevated, threatening human health. Along with these, lung disease increase due to air pollution, and allergic diseases are seen with climate changes. With erosion caused the loss of soil, decrease in the nutrients in the soil and in turn the damage which takes place in flora, infertile areas created with the increase in the tendency of desertification will cause natural disasters, decrease in natural plant-animal species, decrease in forest areas, hindering of husbandry, the dams being exposed to the threat of getting filled by alluvial deposits and being destroyed and all these create negative impacts on human health. In order to avoid all health problems arising from the consequences of deforestation, the factors that degrade ecological balance in forest areas should be considered holistically. The necessary actions should be taken by fulfilling the responsibilities related to the institutions and organizations belonging to the state, especially the related ministries.

___

  • Banzhaf, J., leihner, D.E., Buerkent, A., Serafini, P.G., 1992. Soil Tillage and Windbreak Effects on Millet and Cowpea: I. Wind Speed, Evaporation, and Wind Erosion. Agronomy Journal. 84(6), 1056-1060.
  • Bao, 2011. Notice of Retraction Effects of Shelterbelts on Wind Erosion Control in the Desertified Cropland of North-Western Shandong Province, China, 2011. 2011 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE),10-12 May 2011, China.
  • Başaran M., Erpul G., Uzun O., Gabriels D., 2011. Comparative efficiency testing for a newly designed cyclone type sediment trap for wind erosion measurements. Geomorphology. 130(3-4), 343-351.
  • Burri, K., Gromke, C., Lehning, M., Graf, F., 2011. Aeolian sediment transport over vegetation canopies: A wind tunnel study with live plants. Aeolian Research. 3(2), 205-213.
  • Chen, J., Franklin, J.F., Spies, T.A., 1995. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications. 5(1), 74-86.
  • Cornelis, W.M. and Gabriels, D., 2005. Optimal windbreak design for wind-erosion control. Journal of Arid Environments. 61, 315-332.
  • Çelem, H. ve Perçin, H., 1998. Ağaçlandırma, Ankara Üniversitesi Ziraat Fakültesi Yayınları 1031, Ankara. s.51
  • Doelman, C.J.A., Leurs, R., Oosterom, W.C., Bast, A., 1990. Mineral dust exposure and free radical-mediated lung damage. Experimental Lung Research. 16, 41-55.
  • Erpul, G., Başaran, M., Özcan, A.U., Palta, Ç., 2012. Yarı-kurak bölgelerde rüzgâr erozyonu tehlikesinin değerlendirilmesi: bölgesel ölçekte model geçerlilik çalışmaları. TUBİTAK TOVAG Proje Sonuç Raporu (110O296).
  • FAO, 1969. Soil erosion by wind erosion and measures for its control on agriculture lands. FAO Agriculture Development paper No: 71.
  • Fryrear, D.W., Saleh A., Bilbro J.D., Schomberg H.M., Stout J.E., Zobeck T.M., 1998. Revised Wind Erosion Equation (RWEQ), Technical Bulletin 1, Southern Plains Area Cropping Systems Research Laboratory, Wind Erosion and Water Conservation Research Unit, USDA-ARS.
  • Gabriels, D., Cornelis, W., Pollet, I., Van Coillie, T., Ouessar, M., 1997. The I.C.E. wind tunnel for wind and water erosion studies. Soil Technology. 10(1), 1-8.
  • Gash, J.H.C., 1986. Observations of turbulence downwind of a forest-heath interface. Boundary-Layer Meteorology. 36(3), 227-237.
  • Goossens,D. and Riksen, M.J.P.M., 2007. The role of wind and splash erosion in inland drift-sand areas in the Netherlands. Geomorphology. 88(1-2), 179-192.
  • Goudie A.S. and Watson A., 1984. Rock block monitoring of rapid salt weathering in southern Tunusia. Eart Surface Processes and Landforms. 9(1), 95-98.
  • Hagen, L.J., 1976. Windbreak design for optimal wind erosion control. In: procedings of Symposium: Shelterbelts on the Great Plains. Denver, CO. 20-22 April, pp 31-36.
  • Heiser, G.M. and Dewalle, D.R. 1988. 2. Effects of windbreak structure on wind flow. Agric. Ecosyst. Environ. 22-23(C), 41-69.
  • Irvine, M.R., Gardiner, B.A., Hill, M.K., 1997. The evolution of turbulence across a forest edge. Boundary-Layer Meteorology. 84(3), 467-496.
  • Ki-Pyo, Y. and Young-Moon, K., 2009. Effect of protection against wind according to the variation porosity of wind fence. Environmental Geology. 56(6), 1193-1203.
  • Laird, D.J., 1997. Wind tunnel testing of shelterbelt effects on dust emissions from swine production facilities. Thesis (M.S.)—Iowa State University.
  • Li, J., Okin, G.S., Alvarez, L., Epstein, H., 2007 Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry. 85, 317–332.
  • Li, J., Okin, G.S., Alvarez, L., Epstein, H., 2008. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry. 88(1), 73-88.
  • McDuffie, H.H., Klaassen, D.J. and Dosman, J.A., 1989. Lung Cancer in Saskatchhewan Males.In: Guide to Healty and Hygiene in Agricultural Work. International Labour Office, Geneva, Switzerland, 89 p.
  • Michels, K., Sivakumar, M.V., Allison, B.E., 1995. Wind erosion control using crop residue. II. Effects on millet establishment and yields. Field Crops Research. 40(2), 111-118.
  • Middleton, N. J., Goudie, A.S. and G. L.Wells., 1986. The frequency and source areas of dust storms. In Aeolian geomorphology, ed. W. G. Nickling, Boston: Allen and Unwin, 237–259 p.
  • Molina-Aiz, F.D., Valera, D.L., Álvarez, A.J., Madueño, A., 2006. A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient. Biosystems Engineering. 93 (4), 447–457.
  • Niemeyer, T.C., Gillette, D.A., DeLuisi, J.J., Kim, Y.J., Niemeyer, W.F., Ley, T., Gill, T.E., Ono, D., 1999. Optical depth, size distribution and flux of dust from Owens Lake, California. Earth Surface Processes and Landforms. 24(5), 463-479.
  • Prajapati, S.K. and Tripathi, B.D., 2006. Seasonal Variation of Leaf Dust Accumulation and Pigment Content in Plant Species Exposed to Urban Particulates Pollutio. Pollution Ecology Research Lab., Dep. of Botany, Banaras Hindu Univ., Varanasi, 221005, India.
  • Raine, J.K., Stevenson, D.C., 1977. Wind protection by model fences in simulated atmospheric boundary layer. Journal of Industustrial Aerodynamics. 2, 159–180.
  • Rosenberg, N.J., 1974. Microclimate: The Biological Environment. Wiley, New York.
  • Schenker, M., McCurdy, S., Jenkins, B., John, W., Scales, D., Lawson, R. and Lischak, L.A., 1993. Exposure to amorphous silica during rice farming operations. Contract No. A032-177. Final Report to California Air Resources Board, Sacramento, CA.
  • Sterk, G., Spaan, W.P., 1997. Wind erosion control with crop residues in the Sahel. Soil Science Society of America Journal. 61, 911-917.
  • Thernelius, S.M., 1997. Wind tunnel testing of shelterbelt effects on dust emissions from swine production facilities. Thesis (M.S.)—Iowa State University.
  • Thuyet, D.V., Do, T.V., Sato, T., Hung, T.T., 2014. Effects of species and shelterbelt structure on wind speed reduction in shelter. Agroforestry Systems. 88(2), 237-244.
  • Timur, Ö.B., 2012. Yerleşim alanlarında bitkisel materyalle toz engelleme çalışmaları: Çankırı örneği. Ankara Üniversitesi Fen Bilimleri Enstitüsü. Doktora Tezi. Ankara.
  • Udo, K., Kuriyama, Y., Jackson, D.W.T., 2008. Observations of wind-blown sand under various meteorological conditions at a beach. Journal of Geophysical Research: Earth Surface. 113 FO4008.
  • Udo, K., Yamawaki, S., 2007. Short-term backshore processes under wave and wind actions, J. Coastal Res. SI50, 237–241.
  • Ürgenç, S.İ., 1998. Ağaçlandırma teknikleri, İstanbul Ünv. Orman Fakültesi Yayınları, İstanbul.
  • Wuyts, K., Verheyen, K., De Schrijver, A., Cornelis, W.M., Gabriels, D., 2008. The impact of forest edge structure on longitudinal patterns of deposition, wind speed, and turbulence. Atmospheric Environment, 42(37), 8651-8660.
  • Zobeck, T.M., Van Pelt, R.S., 2006. Wind-induced dust generation and transport mechanics on a bare agricultural field. J. Hazard. Mater. 132, 26–38.