Karbapeneme Dirençli Klebsiella pneumoniae Suşlarının Moleküler Epidemiyolojisi

Amaç: Karbapeneme dirençli Klebsiella pneumoniae enfeksiyonları, azalan tedavi imkanlarıyla birlikte önemli bir klinik sorun haline gelmiştir. Bu çalışmada, İstanbul’da elde edilen K. pneumoniae izolatlarındaki karbapenem direnç oranlarını ve buna sebep olan direnç genlerini incelemek amaçlanmıştır. Gereç ve Yöntemler: Bu prospektif çalışmaya, Temmuz 2013—Temmuz 2014 döneminde hastanemize kabul edilen hastalardan elde edilen toplam 1452 K. pneumoniae izolatı dahil edilmiştir. Mikroorganizmaların tanımlanması ve antimikrobiyal duyarlılık testi için VITEK-2 (bioMérieux, MarcyI’Ѐtoile, Fransa) kullanılmıştır. VITEK-2 otomatize sistem ile karbapenem direnci saptanan suşların ertapenem gradient testi ile de ertapeneme dirençli olduğu bulunmuştur. Karbapenem direncine sebep olan genler real time-polymerase chain reaction ile araştırılmıştır. Bulgular: 1452 K. pneumoniae izolatının 45’i (%3,1) karbapeneme dirençliydi. Bunların 32’si (%71,1) blaOXA-48-pozitif, 9’u (%20) blaNDM-pozitif, 1’i (%2,2) blaVIM-1-pozitifti. Hiçbirinde blaKPC ve blaIMP-1 geni mevcut değildi. Karbapenemaz üreten K. pneumonae izolatlarının en duyarlı olduğu antimikrobiyaller amikasin ve gentamisin idi. Tartışma ve Sonuç: Hastanemizde karbapenem direncine sebep olan çeşitli mekanizmalar bulunmaktadır ve blaOXA-48 geninin %71,1 oranında görülmesi dikkat çekicidir. Bu direncin hızla yayılması ve enzimatik direnç genlerinin aktarımı yoluyla yönetimi zor hastane salgınlarına yol açması mümkündür. Bu nedenle enfeksiyon kontrolünde doğru ve hızlı laboratuvar tanı önemlidir. Daha hızlı sonuçlar elde etmek için moleküler yöntemler de fenotipik yöntemler gibi hastane altyapısına dahil edilmelidir.

Molecular Epidemiology of Carbapenemresistant Klebsiella pneumoniae Isolates

Aim: Carbapenem-resistant Klebsiella pneumoniae infection has become an important clinical problem with reduced therapeutic options. This study aimed to investigate the carbapenem resistancerates and responsible resistance genes in K. pneumoniae isolates derived from clinical samples collected in Istanbul.Materials and Methods: This prospective study included a total of 1452 K. pneumoniae isolates frompatients admitted to our hospital between July 2013 and July 2014. VITEK-2 (bioMérieux, MarcyI’Ѐtoile, France) was used for microbial identification and antimicrobial susceptibility testing. Thecarbapenem-resistant isolates identified by VITEK-2 were also found to be resistant to ertapenemby the ertapenem gradient test. Resistance mechanisms of the carbapenem-resistant isolates wereinvestigated using real time-polymerase chain reaction.Results: Of the 1452 K. pneumoniae isolates, 45 (3.1%) were carbapenem-resistant. Of these, 32(71.1%) were blaOXA-48-positive, 9 (20%) blaNDM-positive, and 1 (2.2%) blaVIM-1-positive. None had thegenes blaKPC and blaIMP-1. The greatest susceptibility by the isolated carbapenemase-producing K.pneumoniae was shown to the antimicrobials amikacin and gentamicin.Discussion and Conclusion: In our hospital, there are several mechanisms causing carbapenem resistance, and the blaOXA-48 positivity rate of 71.1% is significant. This resistance may spread rapidly and,through enzymatic resistance gene transfer, lead to hospital epidemics difficult to manage. For thisreason, accurate and rapid laboratory diagnosis is important in infection control. For faster results,molecular methods, as well as phenotypic methods, must be included in the hospital infrastructure.

___

  • 1. Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob. 2016;15(1):20.
  • 2. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63(4):659–67.
  • 3. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009;47(6):1631–9.
  • 4. Crowley B, Benedí VJ, Doménech-Sánchez A. Expression of SHV-2 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems. Antimicrob Agents Chemother. 2002;46(11):3679–82.
  • 5. Cohen Stuart J, Leverstein-Van Hall MA. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2010;36(3):205–10.
  • 6. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of healthcare-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.
  • 7. Wayne PA. Performance Standards for Antimicrobial Susceptibility Testing, 23rd Informational Supplement. CLSI Document M100-S23. Clinical and Laboratory Standards Institute; 2013.
  • 8. Ciftci IH, Karakece E, Asik G, Demiray T, Er H. Karbapenem direncli Klebsiella pneumoniae suslarinda Oxa-48 ve Kpc varliginin arastirilmasi. Ankem Derg. 2013;27(2):49–54.
  • 9. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of Oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22.
  • 10. European Antimicrobial Resistance Surveillance System. Available at http://www.hpsc.ie/hpsc/A-Z/Microbiology Antimicrobial Resistance/ European Antimicrobial Resistance Surveillance System EARSS/ (accessed in February 2011).
  • 11. Gur D, Hascelik G, Aydin N, Telli M, Gultekin M, Ogulnç D, et al. Antimicrobial resistance in gram-negative hospital isolates: results of the Turkish HITIT-2 Surveillance Study of 2007. J Chemother. 2009;21(4):383–9.
  • 12. Lascols C, Peirano G, Hackel M, Laupland KB, Pitout JD. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother. 2012;57(1):130–6.
  • 13. Aktas Z, Kayacan CB, Schneider I, Can B, Midilli K, Bauernfeind A. Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in Klebsiella pneumoniae in Istanbul, Turkey. Chemotherapy. 2008;54(2):101–6.
  • 14. Hrabák J, Študentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol. 2012;50(7):2441– 3.
  • 15. Demir Y, Zer Y, Karaoglan I. Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Pak J Pharm Sci. 2015;28:1127–33.
  • 16. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and. Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153–63.
  • 17. Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne JP. Epidemiology of carbapenemaseproducing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. Biomed Res Int. 2014;2014:305784.
  • 18. Tsakris A, Poulou A, Bogaerts P, Dimitroulia E, Pournaras S, Glupczynski Y. Evaluation of a new phenotypic OXA-48 disk test for differentiation of OXA-48 carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2015;53(4):1245–51.
  • 19. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.
  • 20. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–606.
  • 21. Fursova NK, Astashkin EI, Knyazeva AI, Kartsev NN, Leonova ES, Ershova ON, et al. The spread of bla OXA48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann Clin Microbiol Antimicrob. 2015;14(1):46.
  • 22. Arana DM, Saez D, García-Hierro P, Bautista V, Fernández-Romero S, Ángel de la Cal M, et al. Concur rent interspecies and clonal dissemination of OXA-48 carbapenemas. Clin Microbiol Infect. 2015;21(2):148. e1–4.
  • 23. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-βlactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12);5046–54.
  • 24. Wang JT, Wu UI, Lauderdale TLY, Chen MC, Li SY, Hsu LY, et al. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS One. 2015;10(3):e0121668.
  • 25. Sahin K, Tekin A, Ozdas S, Akin D, Yapislar H, Dilek AR, et al. Evaluation of carbapenem resistance using phenotypic and genotypic techniques in Enterobacteriaceae isolates. Ann Clin Microbiol Antimicrob. 2015;14(1):44.
  • 26. Yildirim I, Ceyhan M, Gur D, Mugnaioli C, Rossolini GM. First detection of VIM-1 type metallo-beta-lactamase in a multidrug-resistant Klebsiella pneumoniae clinical isolate from Turkey also producing the CTX-M-15 extended-spectrum beta-lactamase. J Chemother. 2007;19(4):467–8.
  • 27. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenemhydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.
  • 28. Yigit H, Queenan AM, Rasheed JK, Biddle JM, Domenech-Sanchez A, Alberti S, et al. Carbapenem resistant strain of Klebsiella oxytoca harboring carbapenemhydrolyzing β-lactamase KPC-2. Antimicrob Agents Chemother. 2003;47(12):3881–9.
  • 29. Patel JB, Rasheed JK, Kitchel B. Carbapenemases in enterobacteriaceae: activity, epidemiology, and laboratory detection. Clinical Microbiology Newsletter. 2009;31(8):55–62.
  • 30. Kaiser RM, Castanheira M, Jones RN, Tenover F, Lynfield R. Trends in Klebsiella pneumoniae carbapenemasepositive K. pneumoniae in US hospitals: report from the 2007-2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. 2013;76(3):356–60.
  • 31. Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S, et al. PCR detection of metallo-b-lactamase gene (blaIMP) in gram-negative rods resistant to broadspectrum b-lactams. J Clin Microbiol. 1996;34(12):2909– 13.
  • 32. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gramnegative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41(12):5407–13.
  • 33. Aktas Z, Bal C, Midilli K, Poirel L, Nordmann P. First IMP-1-producing Klebsiella pneumoniae isolate in Turkey. Clin Microbiol Infect. 2006;12(7):695–6.
  • 34. Pollett S, Miller S, Hindler J, Uslan D, Carvalho M, Humphries RM. Phenotypic and molecular characteristics of carbapenem-resistant Enterobacteriaceae in a health care system in Los Angeles, California, from 2011 to 2013. J Clin Microbiol. 2014;52(11):4003–9.
Anadolu Kliniği Tıp Bilimleri Dergisi-Cover
  • ISSN: 2149-5254
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1933
  • Yayıncı: Hayat Sağlık ve Sosyal Hizmetler Vakfı