Dut (Morus nigra) bitkisi yaprak özütlerinden gümüş nanoparçacıkların biyosentezi ve karakterizasyonu

Gümüş nanoparçacıklarının morfolojik özelliklerinin incelendiği bu çalışmada, indirgen dut (Morus nigra) yaprak özütleri ile gümüş nanoparçacıkları kendi tuzlu çözeltilerinden elde edilmiştir. Yaprak özütüAgNO3 karışımlarındaki gümüş nanoparçacıklarının oluşum kinetiği zamana bağlı UV-Vis spektrumlarıyla, nanoparçacıkların boyutları ve dağılımları ise parçacık boyut analizörü yardımıyla belirlenmiştir. DutAgNO3 karışımlarının absorbans spektrumları 425 nm’de, nanoparçacık boyutları ile alakalı, zamanla artan yüzey plazmon rezonans pikleri sergilemektedir. Yüzey plazmon rezonans piklerinin konumları AgNO3 derişiminden etkilenmemekle birlikte özüt konsantrasyonu artıkça kırmızıya kaymaktadır. Nanoparçacıkların boyutları 7-82 nm arasında, poison benzeri bir dağılım sergilemektedir.

___

  • [1] M., Bhadauria, S., Kushwah, B. S., (2009). Green Synthesis of Nanosilver Particles from Extract of Eucalyptus hybrida (Safeda) Leaf. Digest Journal of Nanomaterials and Biostructures. 4, 537- 543
  • [2] Sharma, N.C., Sahi S. V., Nath, S., Parsons J.G., GardeaTorresdey, J.L., Pal,T.,(2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix embedded nanomaterials. Environ. Sci. Technol. 41, 5137-5142
  • [3] Kasthuri, J., Veerapadian, S., Rajendiran, N., (2009). Biological synthesis of silver and gold nanoprticles using apiin as reducing agent. Colloids Surf. B. 68, 55-60
  • [4] Yılmaz, M.,Turkdemir, H., Kilic, M. A., Bayram, E., Cicek, A., Mete, A., Ulug, B., (2011). Biosynthesis of Silver Nanoparticles Using Leaves of Stevia rebaudiana. Metarial Chemistry and Physics, 3, 1195-1202
  • [5] Nadagouda, M. N., & Varma, R. S., (2008). Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chemistry, 10, 859-862.
  • [6] Lee, HJ., Song, JY., Kim, BS. (2013). Biological Synthesis of Copper Nanoparticles Using Magnolia kobus Leaf Extract and Their Antibacterial Activity. Journal of Chemical Technology, 88(2013), 1971-1977.
  • [7] Sutradhar, P., Saha, M., Maiti, D., (2014). Microwave Synthesis of Copper Oxide Nanoparticles Using Tea Leaf and Coffee Powder Extracts and Its Antibacterial Activity. Journal of Nanostructure in Chemistry, 86, 1-6.
  • [8] Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J., (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
  • [9] Bragg, P. D., Rannie, D. J., (1974). The Effect of Silver İons on The Respiratory Chain of Escherichia coli. Can J Microbiol. 883- 9.
  • [10] Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O., (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52, 662-668.
  • [11] Rogers, J. V., Parkinson, C. V., Choi, Y. W., Speshock, J. L., Hussain, S. M., (2008). A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters, 3, 129.
  • [12] Lamsal, K., Kim, S., Jung, J. H., Kim, Y. S., Kim, K. S., Lee, Y.S., (2011). Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. The Korean Society of Mycology, 39, 26-32.
  • [13] Changwei, H., Mei L., Weili W., Yibin C., Jun C. Liuyan Y., (2012). Ecotoxicity of Silver Nanoparticles on Earthworm Eisenia Fetida: Responses of The Antioxidant System. Acid Phosphatase and ATPase. Toxicological & Environmental Chemistry, 94, 732-741
  • [14] Ishikawa, Y., Shibata, N., Fukatsu, S., (1997). Highly Oriented Si Nanoparticles in SiO2 Created by Si Molecular Beam Epitaxy with Oxygen Implantation. Thin Solid Films, 294, 227-230.
  • [15] Creighton, J.R., Coltrin, M.E., Figiel, J.J., (2008). Observations of Gas-Phase Nanoparticles During InGaN MetalOrganic Chemical Vapor Deposition. Applied Physics Letters, 93, 17s.
  • [16] Schmid, G., (2010). Synthesis of Metal Nanoparticles. Nanoparticles: From Theory to Application (2nd ed.), Ed., 228-231.
  • [17] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., Sastry, M., (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28, 313-318.
  • [18] Kowshik, M. S., Ashtaputre, S., Khaeeazi, W., Vogel, J., Urban, S. K., Kulkarni, P. K., (2003). Extracellular synthesis of silver nanoparticles. J. Mat. Chem, 17, 2459 2464.
  • [19] Mishra, A. K., Singh, B. K., & Pandey, A. K., (2010). In vitroantibacterial activity and phytochemical profiles of Cinnamomum tamala (Tejpat) leaf extracts and oil. Reviews in Infection, 1, 134- 139.
  • [20] Dwivedi, A. D., Gopal, K., (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27- 33.
  • [21] Dubey, S. P., Lahtinen, M., & Sillanpaa, M., (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45, 1065-1071.
  • [22] Parashar, V., Parashar, R., Sharma, B., Pandey, A. C. (2009). Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of Nanomaterials and Biostructures, 4, 45-50.
  • [23] Narayanan, K. B., Sakthivel, N., (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters, 62, 4588-4590.
  • [24] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., Misra, A., (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 212-216.
  • [25] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A., (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and surfaces A: Physicochemical and engineering aspects, 339, 134-139.
  • [26] Pasricha, R., Singh, A., Sastry, M., (2009). Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air–water interface. Journal of Colloid and Interface Science, 333, 380-388.
  • [27] Wang, Y., He, X., Wang, K., Zhang, X., Tan, W., (2009). Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids and Surfaces B: Biointerfaces, 73, 75-79.
  • [28] Parashar, U. K., Saxena, P. S., Srivastava, A., (2009). Bioinspired synthesis of silver nanoparticles. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1).
  • [29] Ankamwar, B., Chaudhary, M., Sastry, M. (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 35, 19-26.
  • [30] Shankar, S. S., Rai, A., Ahmad, A., Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of colloid and interface science, 275, 496-502.
  • [31] Shankar, S. S., Ahmad, A., Sastry, M., (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 19, 1627-1631.
  • [32] Smitha, S. L., Philip, D., Gopchandran, K. G., (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74, 735-739.
  • [33] Begum, N. A., Mondal, S., Basu, S., Laskar, R. A., & Mandal, D. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids and surfaces B: Biointerfaces, 71(1), 113-118.
  • [34] Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50-56.
  • [35] Philip, D., (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: LowDimensional Systems and Nanostructures, 42, 1417 1424.
  • [36] Philip, D., (2010). Honey mediated green synthesis of silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1078-1081.