On the regional boundary observability of semilinear time-fractional systems with Caputo derivative

On the regional boundary observability of semilinear time-fractional systems with Caputo derivative

This paper considers the regional boundary observability problem for semilinear time-fractional systems. The main objective is to reconstruct the initial state on a subregion of the boundary of the evolution domain of the considered fractional system using the output equation. We proceed by providing a link between the regional boundary observability of the considered semilinear system on the desired boundary subregion, and the regional observability of its linear part, in a well chosen subregion of the evolution domain. By adding some assumptions on the nonlinear term appearing in the considered system, we give the main theorem that allows us to reconstruct the initial state in the well-chosen subregion using the Hilbert uniqueness method (HUM). From it, we recover the initial state on the boundary subregion. Finally, we provide a numerical example that backs up the theoretical results presented in this paper with a satisfying reconstruction error.

___

  • Curtain, R.F., & Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York. https://doi.org/10.1007/BFb0006761
  • El Jai, A. (1997). Capteurs et actionneurs dans l’analyse des systemes distribues. Elsevier Masson, Paris.
  • Amouroux, M., El Jai A., & Zerrik, E. (1994). Regional observability of distributed systems. International Journal of Systems Science, 25(2), 301- 313. https://doi.org/10.1080/00207729408928961
  • El Jai, A., Somon, M.C., Zerrik, E. & Pritchard, A.J. (1995). Regional controllability of distributed parameter systems. International Journal of Control, 62(6), 1351-1365.
  • El Jai, A., Afifi, L. & Zerrik, E. (2012). Systems Theory: Regional Analysis of Infinite Dimensional Linear Systems. Presses Universitaires de Perpignan, Perpignan.
  • Boutoulout, A., Bourray, H. & El Alaoui, F.Z. (2013). Boundary gradient observability for semi-linear parabolic systems: Sectorial approach. Mathematical Sciences Letters, 2(1), 45-54. https://doi.org/10.12785/msl/020106
  • Boutoulout, A., Bourray, H., El Alaoui, F.Z., & Benhadid, S. (2014). Regional observability for distributed semi-linear hyperbolic systems. International Journal of Control, 87(5), 898-910. https://doi.org/10.1080/00207179.2013.861929
  • Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for Riemann–Liouville linear fractional evolution systems. Mathematics and Computers in Simulation, 199, 272-286. https://doi.org/10.1016/j.matcom.2022.03.023
  • Baleanu, D., & Lopes, A.M. (2019). Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part A. De Gruyter, Berlin, Boston.
  • Petras, I. (2019). Handbook of Fractional Calculus with Applications: Applications in Control. De Gruyter, Berlin, Boston.
  • Tarasov, V.E. (2019). Handbook of Fractional Calculus with Applications: Applications in Physics, Part A. De Gruyter, Berlin, Boston.
  • Skovranek, T., & Despotovic, V. (2019). Signal prediction using fractional derivative models. In: Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part B. De Gruyter, Berlin, Boston, 179–206.
  • Sahijwani, N., & Sukavanam, N. (2023). Approximate controllability for systems of fractional non-linear differential equations involving Riemann-Liouville derivatives. An International Journal of Optimization and Control: Theories & Applications, 13(1), 59-67. https://doi.org/10.11121/ijocta.2023.1178
  • Pandey, R., Shukla, C., Shukla, A., Upadhyay, A., & Singh, A.K. (2023). A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations. An International Journal of Optimization and Control: Theories & Applications, 13(1), 130–138. https://doi.org/10.11121/ijocta.2023.1256
  • Zguaid, K., El Alaoui, F.Z., & Torres D.F.M. (2023). Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives. International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-022-01106-0
  • Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for linear time-fractional systems. Partial Differential Equations in Applied Mathematics, 6, 100432. https://doi.org/10.1016/j.padiff.2022.100432
  • Zguaid, K., El Alaoui, F.Z., & Boutoulout, A. (2021). Regional Observability of Linear Fractional Systems Involving Riemann-Liouville Fractional Derivative. In: Z. Hammouch, H. Dutta, S. Melliani, and M. Ruzhansky, eds. Nonlinear Analysis: Problems, Applications and Computational Methods, Springer International Publishing, 164–178.
  • Zguaid, K., El Alaoui, F.Z., & Boutoulout, A. (2021). Regional observability for linear time fractional systems. Mathematics and Computers in Simulation, 185, 77–87. https://doi.org/10.1016/j.matcom.2020.12.013
  • Zguaid, K., & El Alaoui, F.Z. (2023). Regional boundary observability for semilinear fractional systems with Riemann-Liouville derivative. Numerical Functional Analysis and Optimization, 44(5), 420–437. https://doi.org/10.1080/01630563.2023.2171055
  • El Alaoui, F.Z., Boutoulout, A., & Zguaid, K. (2021). Regional reconstruction of semilinear Caputo type time-fractional systems using the analytical approach. Advances in the Theory of Nonlinear Analysis and its Application, 5(4), 580- 599. https://doi.org/10.31197/atnaa.799236
  • Boutoulout, A., Bourray, H., & El Alaoui, F.Z. (2010). Regional boundary observability for semi-linear systems approach and simulation. International Journal of Mathematical Analysis, 4(24), 1153–1173.
  • Boutoulout, A., Bourray, H., & El Alaoui, F.Z. (2015). Regional boundary observability of semi-linear hyperbolic systems: sectorial approach. IMA Journal of Mathematical Control and Information, 32(3), 497–513.
  • Lions, J.L., & Magenes, E. (1972). Non- Homogeneous Boundary Value Problems and Applications Vol. 1. Springer-Verlag, Berlin.
  • Mu, J., Ahmad, B., & Huang, S. (2017). Existence and regularity of solutions to time-fractional diffusion equations. Computers & Mathematics with Applications, 73(6), 985–996.
  • Ge, F., Quan, Y.C., & Kou, C. (2018). Regional Analysis of Time-Fractional Diffusion Processes. Springer International Publishing, Switzerland.
  • Tiomela, R.F., Norouzi, F., Nguerekata, G., & Mophou, G. (2020). On the stability and stabilization of some semilinear fractional differential equations in Banach Spaces. Fractional Differential Calculus, 10(2), 267–290.
  • Gottlieb, D., & Orszag, S.A. (1977). Numerical Analysis of Spectral Methods. Society for Industrial and Applied Mathematics, Philadelphia.
  • Garrappa, R. (2018). Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics, 6(2), 16
An International Journal of Optimization and Control: Theories & Applications (IJOCTA)-Cover
  • ISSN: 2146-0957
  • Yayın Aralığı: 4
  • Yayıncı: Prof. Dr. Ramazan YAMAN
Sayıdaki Diğer Makaleler

A study on the approximate controllability results of fractional stochastic integro-differential inclusion systems via sectorial operators

Muthuvel Kothandapani, Kaliraj K.

Existence and stability analysis to the sequential coupled hybrid system of fractional differential equations with two different fractional derivatives

Prof. Dr. Jehad Alzabut, Mohamed HOUAS, Mahammad KHUDDUSH

Regional enlarged controllability of a fractional derivative of an output linear system

Rachıd LARHRISSI, Mustapha BENOUDİ

Adaptive MIMO fuzzy PID controller based on peak observer

Kemal UÇAK, Beyza Nur ARSLANTÜRK

Prediction of anemia with a particle swarm optimization-based approach

Hande USLU, Arshed AHMAD, Khalid Mohammed Saffer Alzaidi, Murat SARİ

Single-drone energy efficient coverage path planning with multiple charging stations for surveillance

Sule Itir Satoglu, Atalay ÇELİK, Enes USTAOMER

The effect of fractional order mathematical modelling for examination of academic achievement in schools with stochastic behaviors

Pelin Yaprakdal, ILKNUR KOCA, Kıvanç UZUN

Fractional fuzzy PI controller using particle swarm optimization to improve power factor by boost converter

Farhan AHMAD, Metin DEMİRTAŞ

The solvability of the optimal control problem for a nonlinear Schrödinger equation

Muhammed Emin DADAŞ, Nigar YILDIRIM AKSOY, Ercan ÇELİK

On the regional boundary observability of semilinear time-fractional systems with Caputo derivative

Khalid Zguaid, Fatima Zahrae El ALAOUİ