Free terminal time optimal control problem for the treatment of HIV infection
Free terminal time optimal control problem for the treatment of HIV infection
In this work, an optimal control approach is presented in order to propose an optimal therapy for the treatment HIV infection using a combination of two appropriate treatment strategies. Theoptimal treatment duration and the optimal medications amount are considered. The main objectiveof this study is to be able to maximize the benefit based on number of healthy CD4+T-cells and CTLimmune cells and to minimize the infection level and the overall treatment cost while optimizing theduration of therapy. The free terminal time optimal control problem is formulated and the Pontryagin's maximum principle is employed to provide the explicit formulations of the optimal controls. Thecorresponding optimality system with the additional transversality condition for the terminal time isderived and solved numerically using an adapted iterative method with a Runge-Kutta fourth orderscheme and a gradient method routine.
___
- [1] Agosto, L. M., Zhong, P., Munro, J. and Mothes, W. Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. PLoS Pathog, 10, e1003982 (2014).
- [2] Arlinghaus, S. Practical handbook of curve fitting. CRC press (1994).
- [3] Boccia, A., Falugi, P., Maurer, H. and Vinter, R. B. Free time optimal control problems with time delays. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference, 520-525 (2013).
- [4] Bonhoeffer, S., Coffin, J. M. and Nowak, M. A. Human immunodeficiency virus drug therapy and virus load. Journal of Virology, 71(4),3275-3278 (1997).
- [5] Burden, T. N., Ernstberger, J. and Fister, K. R. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems Series B, 4(1), 135-146 (2004).
- [6] Butler, S., Kirschner, D. and Lenhart, S. Optimal control of chemotherapy affecting the infectivity of HIV. Ann Arbor, 1001, 48109- 0620 (1997).
- [7] Cai, L., Guo, S. and Wang, S. Analysis of an extended HIV/AIDS epidemic model with treatment. Applied Mathematics and Computation, 236, 621-627 (2014).
- [8] Callaway, D. S. and Perelson, A. S. HIV-1 infection and low steady state viral loads. Bulletin of mathematical biology, 64(1), 29-64 (2002).
- [9] Cassels, S., Jenness, S. M. and Khanna, A. S. Conceptual Framework and Research Methods for Migration and HIV Transmission Dynamics. AIDS and Behavior, 18(12), 2302- 2313 (2014).
- [10] Cheney, E. and Kincaid, D. Numerical mathematics and computing. Cengage Learning, (2012).
- [11] Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science, 267(5197), 483-489 (1995).
- [12] Culshaw, R. V. and Ruan, S. A delaydifferential equation model of HIV infection of CD4+ T-cells. Mathematical biosciences, 165(1), 27-39 (2000).
- [13] Culshaw, R. V., Ruan, S. and Spiteri, R. J. Optimal HIV treatment by maximising immune response. Journal of Mathematical Biology, 48(5), 545-562 (2004).
- [14] Elmouki, I., Saadi, S. Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superfi- cial bladder cancer. Optimal Control Applications and Methods. (2015).
- [15] Elmouki, I., Saadi, S. BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superfi- cial bladder cancer. International Journal of Dynamics and Control. 1-7, (2014).
- [16] Fauci, A.S., Desrosiers, R.C. Pathogenesis of HIV and SIV, 587-636. Cold Spring Harbor Laboratory Press, New York (1997).
- [17] Fleming, W.H., Rishel, R.W. Deterministic and stochastic optimal control. Springer Verlag, New York (1975).
- [18] Gray, C.M., Lawrence, J., Schapiro, J.M., Altman, J.D., Winters, M.A., Crompton, M., Loi, M., Kundu, S.K., Davis, M.M. and Merigan, T.C. Frequency of Class I HLARestricted anti-HIV CD8+ T-cells in individuals receiving Highly Active Antiretroviral Therapy (HAART). The journal of immunology. 162, 1780-1788 (1999).
- [19] Gumel, A.B. Spread and control of HIV: a mathematical model. Accromath. 26(8), (2013).
- [20] Hamdache, A., Saadi, S., Elmouki, I., Zouhri, S. Two Therapeutic Approaches for the Treatment of HIV Infection in AIDS Stage. Journal of Applied Mathematical sciences. 7(105), 5243-5257 (2013).
- [21] Hamdache, A., Elmouki, I., Saadi, S. Optimal Control with an Isoperimetric Constraint Applied to Cancer Immunotherapy. International Journal of Computer Applications. 94(15), 31-37 (2014).
- [22] Hamdache, A., Saadi, S. and Elmouki, I. Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer. International Journal of Dynamics and Control, 1-16 (2015).
- [23] Hlavacek, W.S., Wofsy, C. and Perelson, A.S. Dissociation of HIV-1 from follicular dendritic cells during HAART: mathematical analysis. Proceedings of the National Academy of Sciences. 96(26), 14681-14686 (1999).
- [24] Iversen, A.K., Shafer, R.W., Wehrly, K., Winters, M.A., Mullins, J.I., Chesebro, B. and Merigan, T.C. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. Journal of Virology. 70(2), 1086- 1090 (1996).
- [25] Jacobson, E.L., Pilaro, F. and Smith, A.K. Rationnal IL-2 therapy for HIV positifs individuals: daily low doses enhance immune function without toxicity. Proc. Natl. Acad. Sci USA. 93, 10405-10410 (1996).
- [26] Janeway, C., Murphy, K. P., Travers, P. and Walport, M. Janeway's immunobiology, 530- 535. Garland Science, London (2008).
- [27] Jang, T., Kwon, H. D. and Lee, J. Free terminal time optimal control problem of an HIV model based on a conjugate gradient method. Bulletin of mathematical biology, 73(10), 2408-2429 (2011).
- [28] Jiang, C., Lin, Q., Yu, C., Teo, K. L. and Duan, G. R. An exact penalty method for free terminal time optimal control problem with continuous inequality constraints. Journal of Optimization Theory and Applications, 154(1), 30-53 (2012).
- [29] Joshi, H. R. Optimal control of an HIV immunology model. Optimal control applications and methods, 23(4), 199-213 (2002).
- [30] Kirschner, D.E., Webb, G.F. Immunotherapy of HIV-1 infection. Journal of Biological Systems. 6(1), 71-83 (1998).
- [31] Khanna, A. S., Dimitrov, D. T. and Goodreau, S. M. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical biosciences and engineering: MBE, 11(5), 1065-1090 (2014).
- [32] Klatzmann, D. and Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nature Reviews Immunology, (2015).
- [33] Lenhart, S., Workman, T. Optimal control applied to biological models, 49-55. Chapman and Hall/CRC Mathematical and Computational Biology Series, New York (2007).
- [34] L´evy, Y. Immunoth´erapie de l'infection par le VIH par l'utilisation de cytokines: un ´etat des lieux. M/S: m´edecine sciences. 22(8-9), 751-754 (2006).
- [35] Lukes, D. L. Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press, New York, (1982).
- [36] Maartens, G., Celum, C. and Lewin, S. R. HIV infection: epidemiology, pathogenesis, treatment, and prevention. The Lancet, 384(9939), 258-271 (2014).
- [37] MacArthur, R.D., Novak, R.M. Maraviroc: The First of a New Class of Antiretroviral Agents. Oxford journals. 47(2), 236-241 (2008).
- [38] McAsey, M., Mou, L., Han, W. Convergence of the Forward-Backward Sweep Method in optimal control. Comput Optim Appl. 3, (2012).
- [39] Mastroberardino, A., Cheng, Y., Abdelrazec, A. and Liu, H. Mathematical modeling of the HIV/AIDS epidemic in Cuba. International Journal of Biomathematics, 1550047 (2015).
- [40] Merry, C., Barry, M.G., Mulcahy, F., Ryan, M., Heavey, J., Tjia, J.F., Gibbons, S.E., Breckenridge, A.M. and Back, D.J. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS. 11(4), (1997).
- [41] Palanki, S., Kravaris, C. and Wang, H. Y. Optimal feedback control of batch reactors with a state inequality constraint and free terminal time. Chemical engineering science, 49(1), 85-97 (1994).
- [42] Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. and Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271(5255), 1582-1586 (1996)
- [43] Perelson, A. S., Kirschner, D. E. and De Boer, R. Dynamics of HIV infection of CD4+ T cells. Mathematical biosciences, 114(1), 81- 125 (1993).
- [44] Pontryagin, L. S. Mathematical theory of optimal processes. CRC Press, (1987).
- [45] Pontryagin, L. S., Boltyanskii, V. G. and Gamkrelidze, R. V. EF Mishchenko The Mathematical Theory of Optimal Processes. New York: Interscience (1962).
- [46] Pooseh, S., Almeida, R. and Torres, D. F. Fractional order optimal control problems with free terminal time. arXiv preprint arXiv: 1302.1717 (2013).
- [47] Qun, L., Loxton, R., Teo, K. L. and Wu, Y. H. A new computational method for a class of free terminal time optimal control problems. Pacific Journal of Optimization. 7(1), 63-81 (2011).
- [48] Raffi, F.: Enfuvirtide, premier inhibiteur de fusion dans le traitement de l'infection par le virus de l'immunod´eficience humaine: m´ecanisme d'action et pharmacocintique. M´edecine et maladies infectieuses. 34, 3-7 (2004).
- [49] Roshanfekr, M., Farahi, M. H. and Rahbarian, R. A different approach of optimal control on an HIV immunology model. Ain Shams Engineering Journal, 5(1), 213-219 (2014).
- [50] Roy, P.K., Chatterjee, A.N. T-cell proliferation in a mathematical model of CTL activity through HIV-1 infection. Proceedings of the World Congress on Engineering. 1, (2010).
- [51] Roy, P. K., Saha, S. and Al Basir, F. Effect of awareness programs in controlling the disease HIV/AIDS: an optimal control theoretic approach. Advances in Difference Equations, 2015(1), 1-18 (2015).
- [52] Saadi, S., Elmouki, I. and Hamdache, A. Impulsive control dosing BCG immunotherapy for non-muscle invasive bladder cancer. International Journal of Dynamics and Control, 1-11 (2015).
- [53] Stengel, R. F., Ghigliazza, R. M. and Kulkarni, N. V. Optimal enhancement of immune response Bioinformatics,18(9), 1227- 1235 (2002).
- [54] Su, B., Lederle, A., Laumond, G., Schmidt, S., Decoville, T., Ducloy, C. and Moog, C. Antibody Inhibition of HIV-1 Transmission from Antigen-presenting Cells to CD4 T Lymphocytes Involves Immune Cell Activation. AIDS research and human retroviruses, 30(S1), A154-A154 (2014).
- [55] Tr´elat, E. Controle optimal: th´eorie et applications. Paris: Vuibert (2005).
- [56] Wang, L. and Li, M. Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells. Mathematical Biosciences, 200(1), 44-57 (2006).
- [57] Zhou, X., Song, X. and Shi, X. A differential equation model of HIV infection of CD4+ Tcells with cure rate. Journal of Mathematical Analysis and Applications, 342(2), 1342-1355 (2008).
- [58] Zurakowski, R. and Teel, A. R. A model predictive control based scheduling method for HIV therapy. Journal of Theoretical Biology, 238(2), 368-382 (2006).