Exact boundary controllability of Galerkin approximations of Navier-Stokes system for soret convection

Exact boundary controllability of Galerkin approximations of Navier-Stokes system for soret convection

We study the exact controllability of finite dimensional Galerkin approximation of a NavierStokes type system describing doubly diffusive convection with Soret effect in a bounded smooth domainin Rd(d = 2, 3) with controls on the boundary. The doubly diffusive convection system with Soret effectinvolves a difficult coupling through second order terms. The Galerkin approximations are introducedunder certain assumptions on the Galerkin basis related to the linear independence of suitable tracesof its elements over the boundary. By Using Hilbert uniqueness method in combination with a fixedpoint argument, we prove that the finite dimensional Galerkin approximations are exactly controllable.

___

  • [1] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975.
  • [2] Singer, J. and Bau, H.H., Active control of convection, Physics of Fluids A, 3(12), 2859-2865 (1991).
  • [3] Bergman, L. and Hyun, M.T., Simulation of two dimensional thermosolutal convection in liquid metals induced by horizontal temperature and species gradients, Int. J. Heat Mass Transfer, 39(14), 2883-2894 (1996).
  • [4] Coron, J.-M., On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1, 35-75 (1995/96).
  • [5] Coron, J.-M. and Fursikov, A.V., Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys., 4(4), 429-448 (1996).
  • [6] Fernandez-Cara, E. and Guerrero S., Local exact controllability of micropolar fluids, J. Math. Fluid Mech., 9, 419-453 (2007).
  • [7] Fernandez-Cara, E., Guerrero, S., Imanuvilov, O.Y. and Puel, J.-P., Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83(12), 1501-1542 (2004).
  • [8] Fursikov, A.V. and Imanuvilov, O.Y., Controllability of evolution equations, volume 34 of Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Center, Seoul (1996).
  • [9] Gagliardo, E., Proprieta di alcune classi di funzioni in piu variabili, Ricerche. Mat., 7, 02-137 (1958).
  • [10] Girault, V. and Raviart, P.A., Finite Element Method for Navier-Stokes Equations, Springer, Berlin (1986).
  • [11] Gad-el-Hak, M., Pollard, A. and Bonnet, J.P., Flow Control, Fundamentals and Practices, Lecture Notes in Physics, Springer, Berlin (1998).
  • [12] Imanuvilov, O.Y., Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 6, 39-72 (2001).
  • [13] Gunzburger, M.D., Flow Control, IMA 68, SpringerVerlag, New York (1995).
  • [14] Hurle, D.T.J. and Jakeman, E., Soret driven thermosolutal convection, J. Fluid Mech., 47, 667-687 (1971).
  • [15] Ito, K. and Ravindran, S. S., Optimal control of thermally convected fluid flows, SIAM J. Scientific Computing, 19(6), 1847-1869 (1998).
  • [16] Lions, J.L., Controlabilite exacte, stabilisation et perturbations de systemes distribues. Tomes 1 & 2, Masson, RMA 8&9, Paris (1988).
  • [17] Lions, J.L. and Zuazua, E., Controlabilite exacte des approximations de Galerkin des equations de NavierStokes, C. R. Acad. Sci. Paris, Ser. I, 234, 1015-1021 (1997).
  • [18] Lions, J.L. and Zuazua, E., Exact boundary controllability of Galerkins approximations of Navier-Stokes equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., XXVI (4), 605-621 (1998).
  • [19] Lions, J.L. and Zuazua, E., On the cost of controlling unstable systems: the case of boundary controls, J. Anal. Math., 73, 225-249 (1997).
  • [20] Mercader, I., Batiste, O., Alonso, A. and Knoblock, E., Convections, anti-convections and multi-convections in binary fluid convection, Journal of Fluid Mechanics, 667, 586-606 (2011).
  • [21] Ravindran, S.S., Dirichlet control of unsteady NavierStokes type system related to Soret convection by boundary penalty method, ESAIM Control, Optimization and Calculus of Variations, 20(3), 840-863 (2014).
  • [22] Andreev, V.K. and Ryzhkov, I.I., Symmetry classification and exact solutions of the thermal diffusion equations, Differential Equations, 41(4), 538-547 (2005).
  • [23] Rockafellar, R.T., Extension of Fenchel's duality theorem for convex functions, Duke Mathematical Journal, 33, 81-89 (1966).
  • [24] Shevtsova, V.M., Melnikov, D.E. and Legros, J.C., Onset of convection in Soret-driven instability, Physical Review E, 73, 047302 (2006).
  • [25] Simon, J., Compact sets in the space L p(0, T; B), Annali di Matematika Pura ed Applicata, (IV), 146, 65- 96(1987).
  • [26] Smorodin, B.L., Convection of a binary mixture under conditions of thermal diffusion and variable temperature gradient, J. Appl. Mech. Tech. Phys., 43(2), 217-223 (2002).
  • [27] Sritharan, S.S., Optimal Control of Viscous Flows , SIAM, Philadelphia (1998).
  • [28] Yang, G. and Zabaras, N., The adjoint method for an inverse design problem in the directional solidi- fication of binary alloys, Journal of Computational Physics, 40, 432-452 (1998).