Boundary values for an eigenvalue problem with a singular potential
Boundary values for an eigenvalue problem with a singular potential
In this paper we consider the inverse spectral problem on the interval [0,1]. Thisdetermines the three-dimensional Schrödinger equation with from singularsymmetric potential. We show that the two spectrums uniquely identify thepotential function ?(?) in a single Sturm-Liouville equation, and we obtain newKeywords: evidence for the difference in the ?(?) − ?(?̃) of the Hochstadt theorem.
___
- [1] Guillot, J. C., &Ralston, J. (1988). Inverse spectral theory for a singular Sturm-Liouville operator on [0, 1]. Journal Differential Equations, 76 , 353-373.
- [2] Carlson, R. (1997). A Borg--Levinson theorem for Bessel operators. Pacific Journal of Mathematics, 177, 1-26.
- [3] Serier, F. (2007). The inverse spectral problem for radial Schrödinger operators on [0,1]. Journal Differential Equations, 235, 101-126.
- [4] Savchuk, A. M., &Shkalikov, A. A. (2003). SturmLiouville operators with distribution potentials. Transactions of the Moscow Mathematical Society, 143-192.
- [5] Albeverio, S., Hryniv, R., & Mykytyuk, Y. (2005). Inverse spectral problems for Sturm--Liouville operators in impedance form. Journal Functional Analysis, 222, 143-177.
- [6] Panakhov, E.S., &Sat, M.(2013). Reconstruction of potential function for SturmLiouville operator with Coulomb potential. Boundary Value Problems, 2013 (1),19.
- [7] Sat, M.,& Panakhov, E. (2013). Inverse problem for the interior spectral data of the equation of hydrogen atom. Ukrainian Mathematical Journal, 64.11.
- [8] Zhornitskaya, L. A., &Serov, V. S. (1994). Inverse eigenvalue problems for a singular Sturm- Liouville operator on [0,1]. Inverse Problems, 10:4, 975-987.
- [9] Gough, D. (1990). Comments on helioseismic inference. in Progress of Seismology of the Sun and Stars, Lecture Notes in Physics, Springer-Verlag, Berlin, Vol. 367, pp. 283-318.
- [10] Borg, G.(1946). Eine Umkehrung der SturmLiouvilleschen Eigenwertaufgabe. Acta Mathematica, 78 , 1-96.
- [11] Poschel, J., &Trubowitz, E.(1987). Inverse Spectral Theory. Academic Press, Orlando.
- [12] Bailey, P. B., Everitt, W. N., &Zettl, A.(1991). Computing eigenvalues of singular Sturm-Liouville problems. Results in Mathematics, 20, Nos. 1-2 , 391- 423.
- [13] Abramowitz, M., &Stegun, I.(1972). Handbook of Mathematical Functions. Dover, New York.
- [14] Sat, M.,&Panakhov, E.S. (2013). A uniqueness theorem for Bessel operator from interior spectral data. Abstract and Applied Analysis, Vol. 2013. Hindawi Publishing Corporation.
- [15] Rundell, W., &Sacks, P.E. (2001). Reconstruction of a radially symmetric potential from two spectral sequences. Journal Mathematical Analysis and Applications, 264:354-381.
- [16] Teschl, G. (2009). Mathematical Methods in Quantum Mechanics.With Applications to Schrödinger Operators, Graduate Studies in Mathematics, American Mathematical Society, Rhode Island.
- [17] Panakhov, E., &Yılmazer, R. (2006). On nverse problem for singular Sturm- Liouville operator from two spectra. Ukrainian Mathematical Journal, 58(1),147-154.
- [18] Koyunbakan, H., &Panakhov, E. (2008). Inverse problem for a snguler differential operator. Mathematical and Computer Modelling, 178-185.
- [19] Ercan, A., &Panakhov, E. (2017). Stability problem for sngular dirac equation system on finite interval. AIP Conference Proceedings, 1798, 020054.