Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM

Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM

In this paper, a class of Nonlinear Programming problem is modeled with gradient basedsystem of fractional order differential equations in Caputo's sense. To see the overlap between theequilibrium point of the fractional order dynamic system and the optimal solution of the NLP problemin a longer timespan the Multistage Variational teration Method is applied. The comparisons amongthe multistage variational iteration method, the variational iteration method and the fourth orderRunge-Kutta method in fractional and integer order show that fractional order model and techniquescan be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programmingproblems.

___

  • [1] Luenberger, D.G. and Ye, Y., Linear and Nonlinear Programming, Third Edition, Springer, New York (2008).
  • [2] Sun, W. and Yuan, Y.X., Optimization Theory and Methods: Nonlinear Programming, Springer-Verlag, New York (2006).
  • [3] Arrow, K.J., Hurwicz, L. and Uzawa, H., Studies in Linear and Non-Linear Programming, Stanford University Press, California (1958).
  • [4] Fiacco, A.V. and Mccormick, G.P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York (1968).
  • [5] Yamashita, H., Differential equation approach to nonlinear programming. Math. Program., 18, 155-168 (1976).
  • [6] Botsaris, C.A., Differential gradient methods. J. Math. Anal. Appl., 63, 177-198 (1978).
  • [7] Brown, A.A. and Bartholomew-Biggs, M.C., ODE versus SQP methods for constrained optimization. J. Optim. Theory Appl., 62, 371-389 (1989).
  • [8] Evtushenko, Y.G. and Zhadan, V.G., Stable barrier-projection and barrier-Newton methods in nonlinear programming. Opt. Software, 3, 237-256 (1994).
  • [9] Schropp, J., A dynamical system approach to constrained minimization. Numer. Funct. Anal. Optim., 21, 537-551 (2000).
  • [10] Wang, S., Yang, X.Q. and Teo, K.L., A uni- fied gradient flow approach to constrained nonlinear optimization problems. Comput. Optim. Appl., 25, 251-268 (2003).
  • [11] Jin, L., Zhang, L.-W. and Xiao, X., Two differential equation systems for equalityconstrained optimization. Appl. Math. Comput., 190, 1030-1039 (2007).
  • [12] Jin, L., A stable differential equation approach for inequality constrained optimization problems. Appl. Math. Comput., 206, 186-192 (2008).
  • [13] Shikhman, V. and Stein, O., Constrained optimization: projected gradient flows. J. Optim. Theory Appl., 140, 117-130 (2009).
  • [14] Ozdemir, N. and Evirgen, F., A dynamic ¨ system approach to quadratic programming problems with penalty method. Bull. Malays. Math. Sci. Soc., 33, 79-91 (2010).
  • [15] Podlubny, I., Fractional Differential Equations, Academic Press, New York (1999).
  • [16] Bulut, H., Baskonu¸s, H.M., Belgacem, F.B.M., The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. Abstr. Appl. Anal., Art. ID 203875, 6 pp. (2013).
  • [17] Baskonu¸s, H.M., Mekkaou, T., Hammouch, Z. and Bulut, H., Active control of a chaotic fractional order economic system. Entropy, 17(8), 5771-5783 (2015).
  • [18] Baskonu¸s, H.M., Bulut, H., On the numerical solutions of some fractional ordinary differential equations by fractional AdamsBashforth-Moulton method. Open Math., 13, 547556 (2015).
  • [19] Hristov, J., Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J. Vib. Control, 1-24, (doi: 10.1177/1077546315622773) (2015).
  • [20] Y¨uzba¸sı, S., A collaction method for numerical solutions of fractional-order logistic population model. Int. J. Biomath., 9(3), 14pp. (2016).
  • [21] Atangana, A. and Baleanu, D., CaputoFabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech., (doi:10.1061/(ASCE)EM.1943- 7889.0001091) (2016).
  • [22] Ozdemir, N., Povstenko, Y., Avcı., D. and ¨ ?Iskender, B.B., Optimal boundary control of thermal stresses in a plate based on timefractional heat conduction equation. Journal of Thermal Stresses, 37(8), 969-980 (2014).
  • [23] ?Iskender, B.B., Ozdemir, N., Karao?glan, ¨ A.D., Parameter optimization of fractional order PI?Dµ controller using response surface methodology. Discontinuity and Complexity in Nonlinear Physical Systems, Springer, Eds. Machado, J. A.T., Baleanu, D., Luo, A.C.J., 91-105 (2014).
  • [24] He, J.H., Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul., 2, 235-236 (1997).
  • [25] He, J.H., Approximate analytical solution for seepage flow with fractional derivative in prous media. Comput. Methods Appl. Mech. Eng., 167, 57-68 (1998).
  • [26] Odibat, Z.M. and Momani, S., Application of variational iteration method to Nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul., 7, 27-34 (2006).
  • [27] Momani, S. and Odibat, Z.M., Numerical approach to differential equations of fractional order. J. Comput. Appl. Math., 207, 96-110 (2007).
  • [28] Batiha, B., Noorani, M.S.M., Hashim, I. and Ismail, E.S., The multistage variational iteration method for a class of nonlinear system of ODEs. Phys. Scr., 76, 388-392 (2007).
  • [29] G¨okdo~gan, A., Merdan, M. and Ert¨urk, V.S., A multistage variational iteration method for solution of delay differential equations. Int. J. Nonlinear Sci. Numer. Simul., 14(3-4), 159-166 (2013).
  • [30] Wu, G-C. and Lee, E.W.M., Fractional variational iteration method and its application. Phys. Lett. A., 374, 2506-2509 (2010).
  • [31] Wu, G-C., A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl., 61, 2186-2190 (2011).
  • [32] Wu, G-C. and Baleanu, D., Variational iteration method for the Burgers' flow with fractional derivatives--new Lagrange multipliers. Appl. Math. Model., 37, 6183-6190 (2013).
  • [33] Yang, X.J. and Zhang, F-R., Local fractional variational iteration method and its algorithms. Advances in Computational Mathematics and its Applications, 1(3), 139-145 (2012).
  • [34] Yang, X.J. and Baleanu, D., Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science, 17(2), 625-628 (2013).
  • [35] Matinfar, M., Saeidy, M. and Ghasemi, M., The combined Laplace-variational iteration method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul., 14(2), 93- 101 (2013).
  • [36] He, J.H., Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech., 34, 699- 708 (1999).
  • [37] Evirgen, F. and Ozdemir, N., Multistage ¨ Adomain decomposition method for solving NLP problems over a nonlinear fractional dynamical system. J. Comput. Nonlinear Dyn., 6, 021003 (2011).
  • [38] Evirgen, F. and Ozdemir, N., A fractional ¨ order dynamical trajectory approach for optimization problem with HPM. Fractional Dynamics and Control, Springer, Eds. Baleanu, D., Machado, J.A.T., Luo, A.C.J., 145-155 (2012).
  • [39] Sweilam, N.H., Khader, M.M. and Mahdy, A.M.S., Computational methods for fractional differential equations generated by optimization problem. J. Fract. Calc. Appl., 3, 1-12 (2012).
  • [40] Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S., Numerical study for the fractional differential equations generated by optimization problem using Chebyshev collocation method and FDM. Appl. Math. Inf. Sci., 7, 2011-2018 (2013).
  • [41] Khader, M.M., A new fractional Chebyshev FDM: an application for solving the fractional differential equations generated by optimisation problem. Internat. J. Systems Sci., 46(14), 2598-2606 (2015).
  • [42] Hock, W. and Schittkowski, K., Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin (1981).
  • [43] Schittkowski, K., More Test Examples For Nonlinear Programming Codes, Springer, Berlin (1987).