An algebraic stability test for fractional order time delay systems

An algebraic stability test for fractional order time delay systems

In this study, an algebraic stability test procedure is presented for fractionalorder time delay systems. This method is based on the principle of eliminatingtime delay. The stability test of fractional order systems cannot be examineddirectly using classical methods such as Routh-Hurwitz, because such systemsdo not have analytical solutions. When a system contains the square roots ofs, it is seen that there is a double value function of s. In this study, a stabilitytest procedure is applied to systems including ps and/or different fractionaldegrees such as s where 0 < α < 1, and αǫR. For this purpose, the integerorder equivalents of fractional order terms are first used and then the stabilitytest is applied to the system by eliminating time delay. Thanks to the proposedmethod , it is not necessary to use approximations instead of time delay termsuch as Pad´e. Thus, the stability test procedure does not require the solutionof higher order equations.

___

  • [1] Petr´aˇs, I. (2011). Stability test procedure for a certain class of the fractional-order systems.Proceedings of the 2011 12th In- ternational Carpathian Control Conference, ICCC’2011, (5), 303-307.
  • [2] Podlubny, I. (1999). Fractional-order systems and PIDμ-controllers. IEEE Transactions on Automatic Control, 44(1), 208–214.
  • [3] Liu, M., Dassios I., Milano F. (2019). On the Stability Analysis of Systems of Neutral Delay Differential Equations. Circuits, Systems, and Signal Processing, 38(4), 1639-1653.
  • [4] Milano, F., Dassios, I. (2016). Small-Signal Stability Analysis for Non-Index 1 Hessenberg Form Systems of Delay Differential-Algebraic Equations. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(9), 1521- 1530.
  • [5] Liu, M., Dassios I., Tzounas, G., Milano F. (2019). Stability Analysis of Power Systems with Inclusion of Realistic-Modeling of WAMS Delays. IEEE Transactions on Power Systems, 34(1), 627-636.
  • [6] Petras, I. (2010). Fractional-Order Memristor-Based Chua’s Circuit.IEEE Transactions on Circuits and Systems, 57(12), 975–979.
  • [7] Dorˇc´ak, L., Valsa, J., Gonzalez, E., Terp´ak, J., Petr´aˇs, I., & Pivka, L. (2013). Analogue realization of fractional-order dynamical systems. Entropy, 15(10), 4199-4214. [8] Shah, P., & Agashe, S. (2016). Review of fractional PID controller. Mechatronics, 38, 29– 41.
  • [9] Podlubny, I., Petr´aˇs, I., O’Leary, P., Dorˇc´ak, L., & Vinagre, B. M. (2002). Analogue realizations of fractional order controllers. Non- linear dynamics, 29, 281-296.
  • [10] Luo, Y., & Chen, Y. (2012). Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Auto- matica, 48(9), 2159–2167.
  • [11] Tang, X., Shi, Y., & Wang, L. L. (2017). A new framework for solving fractional optimal control problems using fractional pseudospectral methods. Automatica, 78, 333-340.
  • [12] Razminia, A., & Baleanu, D. (2013). Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics, 23(7), 873-879.
  • [13] Ozturk, N. (1995). Stability Independent of distributed Lag for A Special Class of Distributed Parameter Systems. In Proceedings of the 34th IEEE Conference on Decision and Control, 13-15 December, New Orleans, LA, USA, 3245-3246).
  • [14] Tan, N.,Özgüven, ¨O. F., & Özyetkin,M. M. (2009). Robust stability analysis of fractional order interval polynomials. ISA Transactions, 48(2), 166-172.
  • [15] Ozturk, N. and Uraz, A. (1985). An Analysis Stability Test for a Certain Class of Distributed Parameter Systems with Delays. IEEE Transactions on Circuits and Sys- tems, CAS-32, 393-396.
  • [16] Petras, I. (2008). Stability of Fractional- Order Systems with Rational Orders. Fractional calculus and Applied Aalysis, 12(3), 25.
  • [17] Sabatier, J., Moze, M., & Farges, C. (2010). LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, 59(5), 1594-1609.
  • [18] Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. Computational engineering in systems applications, 963-968.
  • [19] Matignon, D. (1998). Stability properties for generalized fractional differential systems. ESAIM: Proceedings Fractional Differen- tial Systems: Models, Methods and Apli- caitons,(5), 145-158.
  • [20] Lazarevi´c, M. P., & Spasi´c, A. M. (2009). Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Mathematical and Computer Modelling, 49(3- 4), 475–481.
  • [21] Lazarevi´c, M. P., & Debeljkovi´c, D. L. (2008). Finite time stability analysis of linear autonomous fractional order systems with delayed state. Asian Journal of Control, 7(4), 440-447.
  • [22] Hwang, C., & Cheng, Y. C. (2006). A numerical algorithm for stability testing of fractional delay systems. Automatica, 42(5), 825-831.
  • [23] Oustaloup, A., Melchior, P., Lanusse, P., Dancla, F., & Crone, E. (2000). The CRONE toolbox for Matlab.In Proceedings of the 2000 IEEE International Symposium on Computer-Aided Control System Design. Anchorage, Alaska, USA September 25-27, 2000,190-195.
  • [24] Melchior, P., Orsoni, B., Oustaloup, A., Cnrs, U. M. R., & Bordeaux, U. (2001). The CRONE toolbox for Matlab: Fractional Path Planning Design in Robotics.In Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2001 (Cat. No.01TH8591), 534-540.
  • [25] Costa, D. V. and J. S. da. (2004). NINTEGER: A Non-Integer Control Toolbox for MATLAB. In Proceedings of 1st IFAC Workshop on Fractional Differentation and Its Applications, Bordeaux, France, 1-6.
  • [26] Tepljakov, A., Petlenkov, E., & Belikov, J. (2011). FOMCON: Fractional-order modeling and control toolbox for MATLAB.Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems- MIXDES 2011, (4), 684-689.
  • [27] Ozyetkin, M. M. (2018). A simple tuning method of fractional order PI- PDμcontrollers for time delay systems. ISA Transactions, 74, 77–87.
  • [28] Özyetkin, M. M., Yeroğlu, C., Tan, N., & Tağluk, M. E. (2010). Design of PI and PID controllers for fractional order time delay systems. IFAC Proceedings Volumes (IFAC- PapersOnline), 43, 355-360.
  • [29] Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91(3), 386-426.
  • [30] Chen, Y. Q., Petr´aˇs, I., & Xue, D. (2009). Fractional order control - A tutorial. Pro- ceedings of the American Control Conference, 1397-1411.
  • [31] Silva, G. J., Datta, A., & Bhattacharyya, S. P. (2005). PID Controllers for Time-Delay Systems. Birkhauser Boston.
  • [32] Walton, K., & Marshall, J. E. (1987). Direct method for TDS stability analysis.IEE Pro- ceedings D Control Theory and Applications, 134(2), 101-107.
  • [33] Ozturk, N. (1988). Stability Intervals for Delay Systems.In Proceedings of the 27th Con- ference on Decision and Control, Austin, Texas, 2215-2216.