Color Barcodes from Debut to Present: A Broad Survey on the State of the Art

Color Barcodes from Debut to Present: A Broad Survey on the State of the Art

Efficiently transferring information, which is of major importance for almost all engineering systems, requires a data representative appropriate to maintain the density and consistency of the information dispatched. As such a machine-readable representation of data, barcodes are one of the most recognized and powerful instruments of the purpose in every domain. Likewise, from the perspective of engineering, colors are excellent sources of information exchange, since the transmission of color connotes the conveyance of its entire scalar attributes in the same spatial channel component. Exerting colors on barcodes as an effective way of bursting the data conveyance capacity has been an active area of research for over 50 years. Significant progress has been achieved through efforts in this regard. It is also envisagable that the evident evolution in related technologies exoterically empowers the enhancement of color barcode capabilities as capacity and reliability, thereby further encouraging prospected research in this direction. Herein, a comprehensive survey of the studies on this main area of interest is presented. To help better acquainted with the field, also a taxonomy of the peculiar interference sources and distortion effects is provided, besides, the 3D barcoding process itself and the research areas are described. Most of the relevant works from debut to the present are broadly examined. Rather than presenting a timeline, studies that pertain to similar issues are addressed together. Amongst those related, premising or pivotal ones are preferably cited as far as feasible. Moreover, all perused works are analyzed by the research areas and the results are presented. Also, the issues relatively more prominent as affecting the performance of the whole process are specified. In the conclusion, some of the research subjects that appear open, scarce, or require further elaboration were remarked on as well. It is anticipated this study to contribute to the efforts toward leveraging color in barcodes.

___

  • Abdelnour, A., Kaddour, D., & Tedjini, S. (2018). Transformation of Barcode Into RFID Tag, Design, and Validation, IEEE Microwave and Wireless Components Letters, Vol. 28, No. 5, pp. 398-400, DOI: 10.1109/ LMWC.2018.2822735.
  • Bagherinia, H., & Manduchi, R. (2011). A Theory of Color Barcodes, IIS – 0835645, IEEE Color and Photometry in Comp. Vision Workshop (CPCV 2011).
  • Bagherinia, H., & Manduchi, R. (2012). High Information Rate and Efficient Color Barcode Decoding, Computer Vision – ECCV 2012. Workshops and Demonstrations Lecture Notes in Computer Science, Vol. 7584, pp. 482-491, ISBN 978-3-642-33867-0.
  • Bagherinia, H., & Manduchi, R. (2013). Robust real-time detection of multi-color markers on a cell phone, J. of Real-Time Image Processing, Vol. 8/2, pp. 207–223, DOI: 10.1007/s11554-011-0206-9.
  • Bagherinia, H., & Manduchi, R. (2014a). A novel approach for color barcode decoding using smart phones, Published in 2014 IEEE Int. Conference on Image Processing (ICIP), Paris, pp. 2556-2559, DOI: 10.1109/ICIP. 2014.7025517.
  • Bagherinia, H., & Manduchi, R. (2014b). Color Barcode Decoding in the Presence of Specular Reflection, Conference: 4th Color and Photometry in Computer Vision Workshop, DOI: 10.1007/978-3-319-16199-0_19.
  • Berisso, K. (2018). Reed-Solomon Based Bar Code Character Substitution Rates, J. of Business & Management Sci., Vol. 6, No. 3, pp. 70-75, DOI: 10.12691/jbms-6-3-1.
  • Blasinski, H., Bulan, O., & Sharma, G. (2013). Per-Colorant-Channel Color Barcodes for Mobile Applications: An Interference Cancellation Framework, IEEE Transactions on Image Processing, Vol. 22, No. 4, pp. 1498-1511, DOI: 10. 1109/TIP.2012.2233483.
  • Bogataj, U., Muck, T., Lozo, B., & Zitnik, A. (2010). Multi-color 2D datamatrix codes with poorly readable colors, J. of Graph. Eng. Des., Vol. 1, No. 1, pp. 1-8, DOI: 10.24867/JGED-2010-1-001.
  • Braginsky, P. Y. (1999). Color and Shape System for Encoding and Encoding Data, USA Patent, No: 5,869,828.
  • Bufalino, J., Freire, M. L., Kannala, J., & Francesco, M. D. (2020). MAMBA: Adaptive and Bi-directional Data Transfer for Reliable Camera-display Communication. IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), pp. 307-316, DOI: 10.1109/WoWMoM49955.2020.00059.
  • Bulan, O., Monga, V., & Sharma, G. (2009). High capacity color barcodes using dot orientation and color separability, In Proc. of SPIE - The International Society for Optical Engineering, Vol. 7254, Art. No. 725417, DOI: 10.1117/12.807742.
  • Bulan, O., Sharma, G., & Monga, V. (2010). Orientation modulation for data hiding in clustered-dot halftone prints, IEEE Trans. Image Process, Vol. 19, No. 8, pp. 2070–2084.
  • Bulan, O., & Sharma, G. (2011). High capacity color barcodes: Per channel data encoding via orientation modulation in elliptical dot arrays, IEEE Tran.on Image Proc., Vol. 20, No. 5, pp. 1337–1350.
  • Bulan, O., & Sharma, G. (2012). Improved color barcodes via Expectation Maximization style interference cancellation, IEEE Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), Kyoto, pp. 1509-1512, DOI: 10.1109/ICASSP.2012.6288177.
  • Burke, E. M., & Ewing, D. L. Jr. (2014). Improving Warehouse Inventory Management Through RFID, Barcoding and Robotics Technologies, (MBA Professional Report), NPG School, CA, USA, Available: http://hdl.handle.net/10945/44556.
  • Cattrone, P. (2007). Two-dimensional color barcode and method of generating and decoding the same, USA Patent, No: US 2007/0278303 A1.
  • Chae, S., Seo, J., Yang, Y. & Han, T.-D. (2016). ColorCodeAR: Large identifiable ColorCode-based augmented reality system, IEEE Int. Conf. on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings, Budapest, Hungary, pp. 2598-2602, DOI: 10.1109/SMC.2016.7844630.
  • Chandran, V., & Sekhar, A. M. (2017). A secure and reliable channel error correction technique for picode. IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 1-4. DOI:10.1109/ICEICE.2017.8192447.
  • Chatterjee, S. K., & et al. (2018). Space effective and encrypted QR code with sender authorized security levels, IEEE 8th Annual Comp. and Comm. Workshop and Conf. (CCWC), NV, USA, 2018, DOI: 10.1109/CCWC.2018.8301640.
  • Chen, X., Li, W., Zhan, T. & Lu, S. (2018). MMCode - Enhancing Color Channels for Screen-Camera Communication with Semi-Supervised Clustering, 27th Int. Conf. on Computer Comm. and Networks (ICCCN), Hangzhou, China, © 2018 IEEE, DOI: 10.1109/ICCCN.2018.8487328.
  • Cheong, C., & et al. (2006a). Pictorial Image Code: A Color Vision-based Automatic Identification Interface for Mobile Computing Environments, Los Alamitos, Conference Paper 8th IEEE Workshop on Mobile Computing Systems and Applications, CA, USA, 2007, pp. 23-28, DOI: 10.1109/HotMobile.2007.8.
  • Cheong, C., & et al. (2006b). Mixed Code, and Method and Apparatus for Generating the Same, and Method and Apparatus for Decoding the Same, Canadian Patent, No: 2,586,274.
  • Christie, J., & et al. (1972). Transition Code Recognition System, USA Patent, No: US 3,637,993.
  • Christie, J., & et al. (1972). Color Bar Code Tag Reader With Light-Emitting Diodes, USA Patent, No: US 3,684,868.
  • Collomosse, J. P., & Kindberg, T. (2008). Screen codes: Visual hyperlinks for displays, In Proceedings of the 9th Workshop on Mobile Comp. Sys. and App., HotMobile 2008, Napa Valley, CA, USA, DOI: 10.1145/1411759.1411782.
  • Costa, C., & et al. (2015). From Digital to Print: RFID and QR-Code integration in Calabria (Southern Italy) Wood Chain Logistics, Advances in Printing and Media Technology, Vol. XLII(II), Proceedings of the 42nd Int. Research Conference of Iarigai, Helsinki, Finland, ISBN 978-3-9870704-1-9.
  • Cui, H., Bian, H., Zhang, W. & Yu, N. (2019). UnseenCode: Invisible On-screen Barcode with Image-based Extraction, IEEE INFOCOM 2019 - IEEE Conf. on Comp. Communications, Paris, France, 2019, pp. 1315-1323, DOI: 10.1109/INFOCOM.2019.8737627.
  • Dinesh, K., & Sharma, G. (2016). Per-channel color barcodes for displays, 2016 IEEE Int. Conf. on Image Proc. (ICIP), Phoenix, AZ, pp. 3992-3996, DOI: 10.1109/ICIP.2016.7533109.
  • Dragicevic, D., & et al. (2017). Reliability of Dot Peen Marking in Product Traceability, Int. J. of Industrial Eng. and Management (IJIEM), Vol. 8, No. 2, pp. 71-76, ISSN 2217-2661.
  • El-Sheref, I. M., El-Licy, F. A., & Asad, A. H. (2020). Improving Performance of the Multiplexed Colored QR Codes, Int. Journal of Advanced Com. Science and App., Vol. 11, No. 3, pp. 202-206, DOI: 10.14569/ijacsa.2020.0110324.
  • Fan, B., & et al. (2019). Improving continuous traceability of food stuff by using barcode-RFID bidirectional transformation equipment: Two field experiments, Food Control 98, pp. 449-456, DOI: 10.1016/ j.foodcont.2018.12.002.
  • Feng, X., & Zheng, H. (2010). Design and realization of 2D color barcode with high compression ratio, Int. Conference On Computer Design and Applications, Qinhuangdao, pp. V1-314-V1-317, DOI: 10.1109/ICCDA.2010. 5540872.
  • Firmani, D., Italiano, G. F., & Querini, M. (2014). Engineering Color Barcode Algorithms for Mobile Applications. In: Gudmundsson, J., Katajainen, J. (eds) Experimental Algorithms. SEA 2014. Lecture Notes in Computer Science, Vol. 8504. Springer, Cham. DOI: 10.1007/978-3-319-07959-2_18.
  • Fu, Z., Liu, S., Sun, R., Fang, L., & Yu, B. (2020). Distributed color QR code with high-capability and fast decoding. Multimedia Tools and Applications, Vol. 79, pp. 32471–32485. DOI: 10.1007/s11042-020-09469-2.
  • Fuchs, J., Isenberg, P., Bezerianos, A., & Keim, D. (2017). A Systematic Review of Experimental Studies on Data Glyphs, IEEE TVCG, Vol. 23, No. 7, pp. 1863-1879, DOI: 10.1109/TVCG.2016.2549018.
  • Galiyawala, H. J., & Pandya, K. H. (2014). To increase data capacity of QR code using multiplexing with color coding: An example of embedding speech signal in QR code. Annual IEEE India Conf. (INDICON), Pune, pp. 1-6, DOI: 10.1109/INDICON.2014.7030441.
  • Gennip, Y. van, Athavale, P., Gilles, J., & Choksi, R. (2015). A Regularization Approach to Blind Deblurring and Denoising of QR Barcodes, IEEE Transactions on Image Processing, Vol. 24, No. 9, pp. 2864-2873, DOI: 10.1109/TIP.2015.2432675.
  • Gijsenij, A., Gevers, T., & De Weijer, J. V. (2012). Improving color constancy by photometric edge weighting, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 34, No. 5, pp. 918–929.
  • Hagstrom, E., & et al. (2002). Continuous Color Tone Infrared Detected Barcodes, USA Patent, No: 6,354,502 B1.
  • Han, T., & et al. (2006). Machine Readable Code Image and Method of Encoding and Decoding the Same, USA Patent, No: US 7,020,327 B2.
  • Hao, T., Zhou, R., & Xing, G. (2012). COBRA: color barcode streaming for smartphone systems, In Proceedings of ACM 10th International Conference of Mobile Systems (MobiSys), pp. 85–98, Jun. 2012, DOI: 10.1145/2307636.2307645.
  • Harrison, C., Xiao, R., & Hudson, S. E. (2012). Acoustic Barcodes: Passive, Durable and Inexpensive Notched Identification Tags, In Proceedings of the 25th annual ACM Symposium on User interface software and technology, DOI: 10.1145/2380116.2380187.
  • Hecht, D. L. (2001). Printed embedded data graphical user interfaces, IEEE Computer, Vol. 34, No. 3, pp. 47-55, DOI: 10.1109/2.910893.
  • Hu, W., Gu, H., & Pu, Q.. (2013). LightSync: unsynchronized visual communication over screen-camera links, In Proceedings of MobiCom’13 19th Annual International Conference on Mobile Computing & Networking, pp. 15–26, DOI: 10.1145/2500423.2500437.
  • Huang, Y., Cao, P., & Li, J. (2022), Research on multiplexed colour QR code with direct readability. Electronics Letters, Vol. 58: pp. 309-311. DOI: 10.1049/ell2.12433.
  • Jancke, G. (2004). Ultra High Density Triangular Symbology Color Barcode Format, US Provisional Application, No: 60/583571.
  • Jancke, G. (2005). System and Method for Encoding High Density Geometric Symbol Set, USA Patent, No: US 2005/0285761 A1.
  • Jancke, G. (2010). System and Method for Encoding High Density Geometric Symbol Set, USA Patent, No: US 7,751,585 B2.
  • Jung, S.-Y., & et al. (2020). Complementary Color Barcode-Based Optical Camera Communications, Wireless Communications and Mobile Computing, s. l, p. 1, DOI: 10.1155/2020/3898427.
  • Kamizuru, K., Kawakami, Y., Kawasaki H., & Ono S. (2015). Belief-propagation-based robust decoding for two-dimensional barcodes to overcome distortion and occlusion and its extension to multi-view decoding, IEEE Int. Conference on Image Processing (ICIP), Quebec City, QC, pp. 2359-2363, DOI: 10.1109/ICIP.2015.7351224.
  • Kato, H., Tan, K., & Chai, D. (2008). Development of a Novel Finder Pattern for Effective Color 2D-Barcode Detection, IEEE Int. Symp on Parallel and Distributed Processing with Applications, NSW, pp. 1006-1013, DOI: 10.1109/ISPA.2008.140.
  • Kato, H., Tan, K. T., & Chai D. (2009). Novel Colour Selection Scheme for 2D Barcode, In Proceedings of 2009 Int. Symp. on Intelligent Signal Processing and Communication Sys. (ISPACS 2009), pp. 529-532, IEEE, Kanazawa, Japan.
  • Kato, H. (2010). Performance of a color 2D barcode as a pervasive computing tool, 2010 Int. Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, pp. 1-4, DOI: 10.1109/ISPACS.2010.5704669.
  • Kato, H., Tan, K. T., & Chai, D. (2010). Barcodes for Mobile Devices, Cambridge University Press, ISBN-13 978-0-521-88839-4.
  • Kaufman, J. R., Hills, V., Hohberger, C., & et al. (2000). Distortion Resistant Double-Data Correcting Color Transition Barcode and Method of Generating and Using Same, USA Patent, No: US 6,070,805.
  • Kinoshita, T., & et al. (1995). Color Code, USA Patent, No: US 426,289.
  • Kolpatzik, B. W., & Bouman, C. A. (1995). Optimized universal color palette design for error diffusion. J. Electronic Imaging, Vol. 4, No. 2, pp. 131-143. DOI: 10.1117/12.204685.
  • Koppal, S. J. (2014). Lambertian Reflectance, In Computer Vision, Springer, Boston, MA, Ikeuchi K. (eds), pp. 441–443, ISBN 978-0-387-30771-8, DOI: 10.1007/ 978-0-387-31439-6_534.
  • Langlotz, T., & Bimber, O. (2007). Unsynchronized 4D Barcodes: Coding and Decoding Time-Multiplexed 2D Colorcodes, In Proceedings of 3rd International Conference on Advances in Visual Computing ISVC'07, Vol. Part I, pp. 363-374, NV, USA, Springer-Verlag Berlin, Heidelberg, ISBN:3-540-76857-2 978-3-540-76857-9.
  • Lara-Alvarez, C., & Reyes, T. (2019). A Geometric Approach to Harmonic Color Palette Design, Color Research and App., Wiley Online Library, Vol. 44 (1), pp. 106-114, DOI: 10.1002/col.22292.
  • Li, Z. & Chen, W. (2014). D&S Barcode: A Dynamic and Sensitive Barcode for Intelligent Environment Monitoring, Int. Conf. on Intelligent Environments, IEEE, pp. 47-51, DOI: 10.1109/IE.2014.14.
  • Look, T. F. (2008). Multi-dimensional symbologies and related methods, USA Patent, No: US 2008/0035730 A1.
  • López-de-Ipiña, D., Mendonça, P.R.S., & Hopper, A. (2002). TRIP: A Low-Cost Vision-Based Location System for Ubiquitous Computing, Personal and Ubiquitous Computing, Vol. 6, No. 3, pp. 206–219, DOI: 10.1007/s007790200020.
  • Lou, Y., Esser, E., Zhao, H., & Xin, J. (2014). Partially Blind Deblurring of Barcode from Out-of-Focus Blur, SIAM Journal on Imaging Sciences, Vol. 7 (2), pp. 740–760, DOI: 10.1137/130931254.
  • Mayer, J., & et al. (2009). Design of high capacity 3D print codes aiming for robustness to the PS channel and external distortions, 16th IEEE Int. Conference on Image Processing (ICIP), Cairo, pp. 105-108, DOI: 10.1109/ICIP. 2009.5414127.
  • Melgar, M. E. V., & Santander, L. M. (2016). Channel capacity analysis of 2D barcodes: QR Code and CQR Code-5, IEEE Colombian Conf. on Comm. and Comp. (COLCOM), Cartagena, pp. 1-5, DOI: 10.1109/ColComCon.2016.7516376.
  • Melgar, M. E. V., Farias, M. C. Q., Vidal, F. D. B., & Zaghetto, A. (2016). A High Density Colored 2D-Barcode: CQR Code-9, 29th SIBGRAPI Conference on Graphics, Patterns and Images, Sao Paulo, pp. 329-334, DOI: 10.1109/SIBGRAPI.2016.052.
  • Melgar, M. E. V., & Farias, M. C. Q. (2019). High density two-dimensional color code, Multim. Tools & App., Vol. 78, pp. 1949–1970, DOI: 10.1007/s11042-018-6299-4.
  • Memeti, J., Santos, F., Waldburger, M., & Stiller, B. (2013). Data transfer using a camera and a three-dimensional code. PIK: Praxis der Informationsverarbeitung und Kommunikation, Vol. 36(1), pp. 31-37, De Gruyter, DOI: 10.5167/uzh-89247.
  • Mohan, A., Woo, G., Hiura, S., Smithwick, Q., & Raskar, R. (2009). Bokode: imperceptible visual tags for camera based interaction from a distance, Transactions on Graphics., Vol. 28, No. 3, Article No. 98, DOI: 10.1145/1531326.1531404.
  • Nakamura, K., Kawasaki, H., & Ono, S. (2015). Agent-based two-dimensional barcode decoding robust against non-uniform geometric distortion, 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), Fukuoka, 2015, pp. 181-186, DOI: 10.1109/SOCPAR.2015.7492804.
  • Nakamura, K., Kamizuru, K., Kawasaki, H., & Ono, S. (2016). Multi-agent-based Two-dimensional Barcode Decoding Robust against Non-uniform Geometric Distortion, Int. Journal of Computer Information Sys. and Industrial Management Applications, ISSN 2150-7988, Vol. 8, pp. 423–433.
  • Nandhini, S. (2017). Performance evaluation of embedded color QR codes on logos, In Proc. of 3rd International Conf. on Sci. Tech. Eng. & Management, Chennai, pp. 1009-1014, DOI: 10.1109/ICONSTEM.2017. 8261315.
  • Nguyen, C. H., Nguyen, V. H. & Jang, Y. M. (2020). Optical Camera Communication Application using Display Modulation, Int.Conference on Artificial Intelligence in Info. & Comm., Fukuoka, Japan, 2020, pp. 729-731, DOI: 10.1109/ICAIIC48513.2020.9065234.
  • Noppakaew, P., Khomkuth, S., & Sriwilas, S. (2018). Construction of multi-layered QR codes utilizing partitions of positive integers, J. of Math. Computer Science, pp. 306–313, DOI: 10.22436/jmcs.018.03.06.
  • Onoda, T., & Miwa, K. (2011). Hierarchized two-dimensional code, creation method thereof, and read method thereof, Europian Patent, No: EP 1 916 619 B1.
  • Pang, P., Wu, J., & Long, C. (2017). CodeCube : A multi-layer color barcode for mobile social applications, 29th Chinese Control And Decision Conference (CCDC), Chongqing, pp. 7713-7718, DOI: 10.1109/CCDC .2017.7978590.
  • Parikh, D., & Jancke G. (2008). Localization and segmentation of a 2D high capacity color barcode. In Proceedings of 2008 IEEE Workshop on App. of Computer Vision, USA.
  • Pei, S., Li, G., & Wu, B. (2008). Codec System Design for Continuous Color Barcode Symbols, IEEE 8th Int. Conf. on Computer and Information Technology Workshops, Sydney, QLD, pp. 539-544, DOI: 10.1109/CIT.2008.
  • Pinson, M. (2004). Machine-readable symbol and related method, USA Patent, No: US 2004/0200904 A1.
  • Querini, M., Grillo, A., Lentini, A. & Italiano, G. F. (2011). 2D Color Barcodes for Mobile Phones, Int. J. of Computer Sci. and App., Vol. 8 No. 1, pp. 136-155.
  • Querini, M., & Italiano, G. F. (2012). Facial biometrics for 2D barcodes. 2012 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 755-762.
  • Querini, M., & Italiano, G. F. (2013). Color classifiers for 2D color barcodes, In Proc. of Federated Conf. on Computer Science and Information Systems, Kraków 2013, pp. 611-618.
  • Querini, M., & Italiano, G. F. (2014). Reliability and Data Density in High Capacity Color Barcodes, Comp. Sci. & Info. Systems, Vol. 11(4), pp. 1595-1615, DOI: 10.2298/CSIS131218054Q.
  • Rani, R., & Deep, G. (2017). Digital 3D barcode image as a container for data hiding using steganography, 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, pp. 325-330, DOI: 10.1109/ISPCC. 2017.8269698.
  • Sabo, I. I., & Lagoda, H. R. (2017). The wave method of building color palette and its application in computer graphics, arXiv: 1709.04752 [cs.GR].
  • Sali, E., & Keselbrener, M. (2005). Selection of Colors for Color Barcodes, USA Patent, No: US 6,902,113 B2.
  • Sali, E., & Lax, D. (2005). Color Calibration for Color Barcodes, USA Patent Application, Publication: US 2005/0023355 A1.
  • Sali, E., & Lax, D. (2007). Color Barcode System, USA Patent, No: US 7,210,631 B2.
  • Scott, D., Sharp, R., Madhavapeddy, A., &Upton, E. (2005). Using visual tags to bypass bluetooth device discovery, ACM Mobile Comp. Comm. Review 9, pp. 41–53, DOI: 10.1145/1055959.1055965.
  • Shamir, A. (1979). How to share a secret. Communications of the ACM, Vol. 22/11. pp. 612–613. DOI: 10.1145/359168.359176.
  • Shamir, H. (1994). Multi-color Information Encoding System, USA Patent, No: US 5,369,261.
  • Shannon, C. E. (1948). A Mathematical Theory of Communication, The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October.
  • Shimizu, T., & et al. (2011). Color Recognition by Extended Color Space Method for 64-color 2-D Barcode, IAPR Conference on Machine Vision Applications, Nara, Japan.
  • Simske, S. J., Aronoff, J. S., Sturgill, M., & Villa, J. C. (2008). Spectral pre-compensation and security deterrent authentication, In Proceedings of the NIP24: 24th Int. Conference on Digital Printing Technologies, pp. 792-795.
  • Simske, S. J., Sturgill, M., & Aronoff, J. S. (2009). Effect of copying and restoration on color barcode payload density, In Proceedings of the 9th ACM Symposium on Document Engineering, pp. 127-130, Munich, Germany, ACM, NY, USA, DOI: 10.1145/1600193.1600222.
  • Simske, S. J., Aronoff, J. S., & Sturgill, M. (2010). Revenge of the Physical - Mobile Color Barcode Solutions to Security Challenges, HP Laboratories, HPL-2010-7.
  • Simske, S. J., Vans, M., & Loucks, B. (2013). Incremental Information Objects and Progressive Barcodes, Journal of Imaging Science & Tech., Vol. 57, No. 3, pp. 30405-1-30405-9(9), DOI: 10.2352/J. ImagingSci.Technol.2013.57.3.030405.
  • Simske, S. J., & Vans, M. (2014). Applications for Progressive Barcodes, Journal of Imaging Sci.& Tech., R 58(4): 040404-1-040404-9, Society for Imaging Sci. and Tech.
  • Sirmen, R. T. (2016). A Construction and Evaluation Methodology for Color Palettes of Information Representation, In Proc. of 4th International Conf. on Advanced Technology & Sciences, Rome, Italy, Nov. 2016, pp. 93-96, E-ISBN: 978-605-9119-79-5.
  • Sirmen, R. T., & Üstündağ, B. B. (2017). An information-theoretical approach to the information capacity and cost-effectiveness evaluation of color palettes, International Journal of Computing and Optimization, Vol. 4, No. 1, 43-51, DOI: 10.12988/ijco.2017.759.
  • Sirmen, R.T. (2022). Novel methodology for construction and decoding of color data codes [PhD thesis, Istanbul Technical University]. Turkish Council of Higher Education Thesis Center. https://tez.yok.gov.tr/UlusalTezMerkezi.
  • Tan, A. K. T., & Chai, D. (2012). Improving mobile color 2D-barcode JPEG image readability using DCT coefficient distributions, Int. Conf. on Audio, Language and Image Processing 2012, Shanghai, pp. 123-128, DOI: 10. 1109/ICALIP.2012.6376598.
  • Tan, K. T., Chai, D., Kato, H., & Ong, S. K. (2012). Designing a Color Barcode for Mobile Applications. IEEE Pervasive Computing, Vol. 11/2, pp. 50-55. DOI: 10.1109/MPRV.2010.67.
  • Tan, J., Echevarria, J., & Gingold, Y. (2018). Palette-based image decomposition, harmonization, and color transfer, arXiv: 1804.01225 [cs.GR].
  • Tan, P-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining, Pearson Education, Inc., ISBN 0-321-42052-7.
  • Taylor, C. (2006). Two-dimensional color barcode with preserved plane and lossy plane layers, USA Patent, No: US 7,118,041 B2.
  • Tian, Y. (2015). Four Dimensional (4D) Color Barcode for High Capacity Data Encoding and Decoding, USA Patent, No: 8,931,700 B2.
  • Tribak, H., & Zaz, Y. (2017). QR Code Recognition based on Principal Components Analysis Method. Int. J. of Advanced Comp. Sci. and App., Vol. 8, No. 4, pp. 241-248, DOI:10.14569/IJACSA.2017.080433.
  • Trpovski, Z. (2017). Geometric modifications of QR code. South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), pp. 1-6, DOI: 10.23919/SEEDA-CECNSM.2017.8089994.
  • URL-1: GS1/Standards, “Two-dimensional (2D) barcodes”, GS1 [Online]. Available: https://www.gs1.org/barcodes/2d. [Accessed: 25.11.2022].
  • URL-2: BarTender by Seagull Scientific, “Han Xin Code”, Seagull Scientific, Inc., 2020. [Online]. Available: https://barcodeguide.seagullscientific.com/Content/Symbologies/Han_Xin.htm. [Accessed: 25.11.2022].
  • URL-3: DENSO WAVE, “Patents pertaining to QR Code”, DENSO WAVE Inc. [Online]. Available: https://www.qrcode.com/en/patent.html. [Accessed: 25.11.2022].
  • URL-4: Microsoft/Research, “High Capacity Color Barcodes (HCCB)”, Microsoft Inc. [Online]. Available: https://www.microsoft.com/en-us/research/project/high-capacity-color-barcodes-hccb. [Accessed: 25.11.2022].
  • URL-5: Mississippi Railroad Information, “Automatic Car Identification A.C.I.”, icrr.net Selected Mississippi information Web Site. [Online]. Available: https://www.icrr.net/aci.htm. Accessed: 25.11.2022].
  • URL-6: OP3/ShotCode, “All about ShotCodes and why to use them!”, OP3. Available: https://web.archive.org/web/20060412031139/http://www.shotcode.com/aboutshotcodes. [Accessed: 25.11.2022].
  • Vans, M., Simske, S. J., & Loucks, B. (2012). Progressive Barcodes, HP Laboratories, HPL-2012-182.
  • Wahli, R., & et al. (1972). Method and apparatus for evaluating color-coded information, USA Patent, No: US 3,663,801.
  • Wang, A., & et al. (2014). Enhancing reliability to boost the throughput over screen-camera links, In Proceedings of MobiCom’14 20th Annual International Conference on Mobile Computing & Networking, pp. 41–52, DOI: 10.1145/2639108.2639135.
  • Wang, Q., & et al. (2015). Rain Bar: Robust Application-Driven Visual Communication Using Color Barcodes, IEEE 35th International Conference on Distributed Computing Systems, Columbus, OH, pp. 537-546, DOI: 10.1109/ICDCS.2015.61.
  • Wang, T., Han, H., & Wang, Z. (2020). FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code. IEEE/ACM Symposium on Edge Computing (SEC), pp. 364-369, DOI: 10.1109/SEC50012.2020.00053.
  • Wang, Y. P., & Ye, A. (1995). Maxicode data extraction using spatial domain features exclusive of fourier type domain transfer processing, USA Patent, No: US 5,814,801 A.
  • Ward, M. O. (2002). A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization, Information Visualization, 1 (3-4), pp. 194-210, DOI:10.1057/PALGRAVE.IVS.9500025.
  • Ward, M. O. (2008). Multivariate Data Glyphs: Principles and Practice. In: Handbook of Data Visualization, pp. 179-198, Springer Handbooks of Computational Statistics, Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-540-33037-0_8.
  • Wu, D., & Wu, Y. (2020). Covert Communication via the QR Code Image by a Data Hiding Technique Based on Module Shape Adjustments, IEEE Open J. of the Comp. Society, Vol. 1, pp. 12-34, DOI: 10.1109/OJCS.2020.2984473.
  • Xu, W., & McCloskey, S. (2011). 2D Barcode localization and motion deblurring using a flutter shutter camera, IEEE Workshop on App. of Computer Vision (WACV), Kona, HI, pp. 159-165, DOI: 10.1109/WACV.2011.5711498.
  • Yang, J., Peng, H., Liu, L., & Lu, L. (2019). 3D printed perforated QR codes, Computers & Graphics, Vol. 81, pp. 117-124, DOI: 10.1016/j.cag.2019.04.005.
  • Yang, Z., & et al. (2016). Towards robust color recovery for high-capacity color QR codes, IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, September 2016, pp. 2866-2870, DOI: 10.1109/ICIP.2016.7532883.
  • Yang, Z., & et al. (2018). Robust and Fast Decoding of High-Capacity Color QR Codes for Mobile Applications, IEEE trans. on image proc.: a publication of the IEEE Signal Processing Society, DOI: 10.1109/TIP.2018.2855419.
  • Yi, F., Zhai, G. & Zhu, Z. (2019). A Robust Circular Two-Dimensional Barcode and Decoding Method, Picture Coding Symposium (PCS), Ningbo, China, 2019, pp. 1-5, DOI: 10.1109/PCS48520.2019.8954533.
  • Yin, D., Yuk, S., & Lee, C. (2008). System and Method for Encoding and Decoding Large Capacity 2-Dimensional Color Bar Code Which Can Be Color-Corrected, USA Patent, No: US 2008/0000991 A1.
  • Zhang, Y., & Lu, T. (2015). A fast color barcode detection method through cross identification on mobile platforms, 13th Int. Conf. on Document Analysis and Recognition, Tunis, pp. 416-420, DOI: 10.1109/ICDAR.2015.7333795.
  • Zhao, J., & Li, X-Y. (2020). SCsec: A Secure Near Field Communication System via Screen Camera Communication, IEEE Transactions on Mobile Computing, Vol. 16, No.8, 79, pp.1943-1955, DOI: 10.1109/TMC.2019.2913412.
  • Zhou, M., & et al. (2018). Enabling Online Robust Barcode-Based Visible Light Communication With Realtime Feedback, IEEE Trans. on Wireless Communications, Vol. 17, No. 12, pp. 8063-8076, DOI: 10.1109/TWC.2018.2873731.
  • Zeng, Y., & Chang, W. (2015). A new data coding scheme using contrast-controllable color intersection. IEEE International Conference on Image Processing (ICIP), pp. 2741-2745, DOI: 10.1109/ICIP.2015.7351301.