Taş Kolonların Performans Analizi

Taş kolonlar yapıların temel taşıma gücünün geliştirilmesi için yaygın olarak kullanılmaktadır. Birçok taş kolon tasarımı birim hücre kavramına dayanmaktadır. Bu araştırmada, birim hücre kavramındaki yenilme mekanizmasının (deformasyon), yer değiştirmelerinin ve taşların deformasyon davranışlarının önemli özellikleri sunulmaktadır. 100 kPa ve 1000 kPa yük altında yumuşak zemindeki ve taş kolonların davranışlarını incelemesi için sayısal hesaplamalari yapılıp, sonlu elemanlar yöntemi kullanılarak en uygun model araştırılmıştır. Ayrıca, ilgili parametre seçimi için ek bir geri analizi yapılmıştır. Bu çalışmada birim hücresinde deformasyon ve oturma tahmini önemli noktalardır. Analizler için sonlu elemanlar yazılımı PLAXIS kullanılmıştır. Zeminin yavaş aşırı boşluk basınç artışı ile inşa edildiği varsayılan bu çalışmada drenajlı yükleme koşulu analiz edilmiştir. PLAXIS 2D'deki Pekleşen zemin ve Mohr-Coulomb Modeli, hem granüler kolon malzemesinin hem de işlenmiş yumuşak zeminin davranışını modellemek için kullanılmıştır. Genel olarak, birim hücrede bulunan taş kolon, kolon derinliği boyunca çevredeki zeminlerden yaklaşık 4-5 kat daha fazla yük paylaşmıştır

___

  • [1] Baumann V, Bauer GE (1974). “The Performance of Foundations on Various Soils Stabilized by the Vibro Compaction Method. ” Canadian Geotechnical Journal, 11(4), 509–530.
  • [2] Van Impe WF, De Beer E. Improvement of Settlement Behavior of Soft Layers by Means of Stone Columns. 8th international conference on soil mechanics and foundation engineering, Helsinki, 1983; 309–312.
  • [3] Madhav MR, Van Impe WF (1994). “Load Transfer through a Gravel Bed on Stone Column Reinforced Soil.” Journal of Geotechnical Engineering ASCE, 24 (2), 47–62.
  • [4] Indraratna B, Basack S, Rujikiatkamjorn C (2012). “Numerical Solution of Stone Column Improved Soft Soil Considering Arching, Clogging, and Smear Effects.” Journal of Geotechnical and Geoenvironmental Engineering, 139 (3), 377–394.
  • [5] Han J, Ye SL (2001). “Simplified Method for Consolidation Rate of Stone Column Reinforced Foundations.” Journal of Geotechnical and Geoenvironmental Engineering, 127 (7), 597–603.
  • [6] Ng KS, Tan SA (2014). “Floating Stone Column Design and Analyses.” Soils and Foundations 54 (3), 478–487.
  • [7] Balaam NP, Booker JR (1981). “Analysis of Rigid Rafts Supported by Granular Piles.” International Journal of Numerical and Analytical Methods in Geomechanics, 5 (4), 379–403.
  • [8] Castro J, Sagaseta C (2009). “Consolidation around Stone Columns. Influence of Column Deformation.” International Journal of Numerical Analytical Methods in Geomechanics, 33 (7), 851–877.
  • [9] Barksdale RD, Bachus RC (1983). Design and Construction of Stone Columns. Federal Highway Administration Office of Engineering and Highway Operations, FHWA/RD- 83/026, Virginia, USA.
  • [10] Bergado DT, Anderson LR, Miura N, & Balasubramaniam AS (1996). Soft Ground Improvement in Lowland and Other Environments, ASCE Press, New York.
  • [11] Aboshi H, Ichimoto E, Enoki M, Harada K. The ‘‘Compozer’’ A Method to Improve Characteristics of Soft Clays by Inclusion of Large Diameter Sand Columns. In: Proceeding, international conference on soil reinforcement, 1979, 211–216.
  • [12] Schanz T, Vermeer PA, Bonnier PG 1999. «The Hardening Soil Model: Formulation and Verification. Beyond 2000 in Computational Geotechnics, 10 years of PLAXIS, Balkema, Rotterdam, 281–296.
  • [13] Brinkgreve RBJ, Swolfs WM, Engin E, Waterman D, Chesaru A, Bonnier PG, Galavi V (2010). PLAXIS 2D, User manual, Netherlands.
  • [14] Priebe, H.J (1995). “The Design of Vibro Replacement.” Ground Engineering, 28 (12), 31–37.
  • [15] Poulos, H.G (1994a). “An Approximate Numerical Analysis of Pile-Raft Interaction.” International Journal of Numerical Analytical Methods in Geomechanics, 18 (7), 73-92.
  • [16] Poulos, H.G, (1994b). “Settlement Prediction for Driven Piles and Pile Groups.” Special Technical Publication 40, ASCE, 2, 1629-1649.