İyon-Seçici Elektrotlar Kullanılarak Çevre Numunelerindeki Sularda Sertlik Tayini

Bu çalışmada, suyun sertliğinin belirlenmesinde kullanılmak üzere ticari olarak satın alınan iyonofor maddeler ile Ca2+ ve Mg2+-seçici mikro boyutta potansiyometrik PVC-membran elektrotlar geliştirildi. Hazırlanan Ca2+ ve Mg2+-seçici elektrotların potansiyometrik performans karakteristikleri belirlendi ve ölçümlerde ana iyon çözeltisine karşı her 10 kat konsantrasyon değişimi için sırasıyla ortalama 23.5 ve 27.6 mV potansiyel farkı gözlendi. Elektrotların, 1x10-1-1x10-5 mol L-1 derişim aralığında ana iyon çözeltisine karşı doğrusal davranış sergilediği, alkali ve toprak alkali metal iyonlarının yanında ana iyona karşı oldukça seçici olduğu belirlendi. Laboratuvarda hazırlanan potansiyometrik PVC-membran iyon-seçici elektrotlar kullanılarak çevre numunelerdeki suların sertlik tayini durgun ortamda gerçekleştirildi. Ayrıca, su numunelerinin sertliği standart sertlik tayin yöntemi olan kompleksometrik EDTA titrasyonu ile de yapıldı. Daha sonra numunelerin sertlikleri AAS tekniği kullanılarak analiz edildi ve tüm ölçümler potansiyometrik sonuçlarla karşılaştırmalı olarak verildi. Elde edilen sonuçlar, geliştirilen Ca2+ ve Mg2+-seçici mikro boyutta potansiyometrik PVC-membran elektrotların sulardaki sertlik tayininde rutin olarak kullanılabileceğini göstermektedir.

___

  • [1] Numata, M., Baba, K., Hemmi, A. and Hachiya, H. (2001). Determination of hardness in tap water and upland soil extracts using a long-term stable divalent cation selective electrode based on a liphophilic acyylate resin as a membrane matrix, Talanta, 55, 449-457.
  • [2] Captian-Vallvey, L. F. and Fernandez-Ramos, M. D. (2003). Characterization of a transparent optical test strip for quantification of water hardness, Analytica Chimica Acta, 481, 139-148.
  • [3] Gabrielli, C., Maurin, G. and Francy-Chausson, H. (2006). Electrochemical water softening: principle and application, Desalination, 201, 150-163.
  • [4] Park, J., Song, J. and Yeon, K. (2007). Removal of hardness ions from tap water using electromembrane processes, Desalination, 202, 1-8.
  • [5] Bequet, S., Abenoza, T. and Espenan, J. (2000). New composite membrane for water softening, Desalination, 131, 299-305.
  • [6] Yildiz, E., Nuhoglu, A., Keskinler, B., Akay, G. and Farizoglu, B. (2003). Water softening in a crossflow membrane reactor, Desalination, 159, 139-152.
  • [7] Ghizellaoui, S., Chibani, A. and Ghizellaoui, S. (2005). Use of nanofiltration for partial softening of very hard water, Desalination, 179, 315-322.
  • [8] Soltanieh, M. and Mousavi, M. (1999). Application of charged membranes in water softening: modeling and experiments in the presence of polyelectrolytes, Journal of Membrane Science, 154, 53-60.
  • [9] Juang, R. and Chiou, C. (2001). Feasibility of the use of polymer-assisted membrane filtration for brackish water softening, Journal of Membrane Science, 187, 119-127.
  • [10] Gasco, G. and Mendez, A. (2005). Sorption of Ca2+, Mg2+, Na+, K+ by clay minerals, Desalination, 182, 333-338.
  • [11] Arrigo, I., Catalfamo, P., Cavallari, L. and and Di Pasquale, S. (2007). Use of zeolitized pumice waste as a water softening agent, Journal of Hazardous Materials, 147, 513-517.
  • [12] Suryanarayan, S., Mika, A. and Childs, R. (2006). Gel- filled hollow fiber membranes for water softening, Journal of Membrane Science, 281, 397-409.
  • [13] Vasilyuk, S. L., Matseva, T. V. and Belyakov, V. N. (2004). Influence of water hardness on removal of copper ions by ion-exchange-assisted electrodialyses, Desalination, 162, 249-254.
  • [14] Bellomo, A., Robertis, A. and Darrigo, C. (1983). Semi-automatic end point detection in the determination of total hardness in water, Analytica Chimica Acta, 149, 401-403.
  • [15] Saurina, J., Lopez-Aviles, E., Le Moal, A. and Hernandez-Cassou, S. (2002). Determination of calcium and total hardness in natural waters using a potentiometric sensor array, Analytica Chimica Acta, 464, 89–98.
  • [16] Lima, R. A. C., Santos, S .R. B. and Costa, R. S. (2004). Hardness screening of water using flow-batch photometric system, Analytica Chimica Acta, 518, 25-30.
  • [17] Terebbe, U., Niggemann, M. and Cammann, K. (2001). A new calcium-sensor based on ion-selective conductometric microsensors- membranes and features, Fresenius J. of Anal. Chemistry, 371, 734–739.
  • [18] Hu, Z. and Qi, D. (1991). Water hardness ion-selective electrode based on a neutral carrier, Anal. Chim. Acta, 248, 177-181.
  • [19] Rondinini, S., Mussini, P., Vertova, A. and Bortoluzzi, A. (1995). A new, long-lived Caselective electrode, Sensors and Actuators B, 23, 27-33.
  • [20] Bratov, A. and Abramova, N. (2000). Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk, Analytica Chimica Acta, 408, 57-64.
  • [21] Lindfors, T. and Ivaska, A. (2000). All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with tetraoctylammonium chloride as cationic additive, Analytica Chimica, Acta, 404, 111-119.
  • [22] Qin, Y., Mi, Y. and Bakker, E. (2000). Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly(vinil chloride) sensing membranes plasticized with bis(2-ethylhegzyl) sebacateand onitrophenyloctylether, Analytica Chimica Acta, 421, 207-220.
  • [23] Smith, D. and Fritz J. (1998). Rapid determination of magnesium and calcium hardness in water by ion chromotography, Analytica Chimica Acta, 204, 87-93.
  • [24] Amelin, V. G. and Tret’yakov, A.V. (2002). Adsorption-bonded azo reagents in chemical tests based on the principles of precipitation paper chromotography, Journal of Analytical Chemistry, 58, 829-837.
  • [25] Moreno, L., Merlos, A. and Abramova N. (2006). Multi-sensor array used as an “electronic tonque” for mineral water analyses, Sensors and Actuators B, 116, 130-134.
  • [26] Rius, A. and Callao, M. (2001). Application of time series models to the monitoring of a sensor array analytical system, Trends in Analytical Chemistry, 20, 168-177.
  • [27] Lukov, S. and Kounaves, S. (2005). Analyses of simulated martian regolith using an array of ion selective electrodes, Electroanalyses, 17, 15-16.
  • [28] IUPAC, (1994). Analytical Chemistry Division, Commission on Electroanalytical Chemistry, Recomendations for nomen-clature of Ion-selective Electrodes, Pure Appl. Chem., 66, 2527-2536.