DC04 EN10130 Kesme ve Ütüleme Performansının Deneysel ve Sayısal Olarak İncelenmesi

Hassas kesme işlemi, dar boyutsal toleranslara sahip ve kesme yüzey kalitesinin, geleneksel kesme yöntemleri ile karşılaştırıldığında çok daha üstün olmasının istendiği sac parçaların imalatı için başvurulan bir yöntemdir. Sac malzeme özellikleri ile kesme kalıbının tasarımı, sıvama boşlukları ve işleme parametreleri metallerin hassas kesebilmesinde önemli bir faktördür. Bu çalışmada otomotiv yedek parça üretiminde kullanılan, yüksek darbe dayanıma ve mukavemetine sahip DC04 EN10130 cold rolled steel kalitesindeki sac mamulden krank keçesi için hassas kesme ve sıvama prosesi sonlu elemanlar metodu ile incelenmiştir. Yapılan çalışmada hedef geometri için tasarlanmış kalıp geometrilerinden kesme boşluğu %1, 3, 6 ve sıvama oranını da %0, 5, 7.5 olan simülasyon sonuçları ile deneysel sonuçlar birbirleri ile büyük oranda uyum göstermiştir.

Investigation of Cutting and Ironing Performance of DC04 EN10130 Experimentally and Numerically

Precision cutting is a method used for the manufacture of sheet metal parts with narrow dimensional tolerances and where the cutting surface quality is desired to be much superior compared to conventional cutting methods. Sheet material properties and the design of the cutting die, ironing clearance and machining parameters are important factors in precision cutting of metals. In this study, the precision cutting and ironing process for the crank felt made of DC04 EN10130 cold rolled steel quality sheet metal with high impact resistance and strength, which is used in the production of automotive spare parts, was investigated by the finite element method. In the study, the simulation results with a cutting gap of 1, 3, 6 percent and a spinning ratio of 0.5, 7.5%, among the mold geometries designed for the target geometry, and the experimental results were in good agreement with each other.

___

  • Refrans 1 Mucha J,. 2010. An Experimental Analysis of Effects of Various Material Tool’s Wear on Burr During Generator Sheets Blanking, The International Journal of Advanced Manufacturing Technology, 50(5-8), 495-507.
  • Referans2 Schmidt R. A., Birzer F., Höfel P., Reh B., Hellman M., Rademacher P., Hoffmann H., 2007. Cold Forming and Fineblanking, A Handbook, Buderus Edelstahl Bad GmbH, Feintool Technologies AG Lyss, Hoesch Hohenlimburg GmbH, Unternehmensgruppe CD Walzholz GmbH und Co. KG, Germany.
  • Referans3 Aravind U., Gopalakrishnan C. K., Uday, C., Venugopal P., 2017. The Effect of Using Rubber For Applying Counter Force in Fine Blanking of AISI 304 Stainless Steel, Procedia engineering, 207, 1523-1527.
  • Referans4 Zhuang X., Ma S., Zhao Z. 2017. A Microstructure-Based Macro-Micro Multi-Scale Fine-Blanking Simulation of Ferrite-Sementite Steels, International Journal of Mechanical Sciences, 128, 414-427.
  • Referans5 Liu Y., Hua L., Mao H., Feng W., 2014. Finite Element Simulation of Effect of Part Shape on Forming Quality in Fine-Blanking Process, Procedia Engineering, 81, 1108-1113.
  • Referans6 Sorgenfrei A. R., 1997. Finite Element Modeling of Fine Blanking: Towards Supervisory Control of The Production Process, Michigan Technological University.
  • Referans7 Gu J., Kim H., Shih H. C., Dykeman J., 2018. Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS) (No. 2018-01-0626), SAE Technical Paper.
  • Referans8 Rustamov F., 2009. Hassas kesmeyi etkileyen konstrüksiyon parametreleri.
  • Referans9 Saier A. A. E., 2021. Theoretical and Experimental Investigation of Punching Process of DP800 Automotive Steel Sheet With Different Punch Tips.
  • Referans10 Levy B. S., Van Tyne C. J., 2012. Review of The Shearing Process For Sheet Steels and Its Effect on Sheared-edge Stretching, Journal of materials engineering and performance, 21(7), 1205-1213.
  • Referans11 Bao Y., Wierzbicki T., 2004. On Fracture Locus in The Equivalent Strain and Stress Triaxiality Space, International Journal of Mechanical Sciences, 46(1), 81-98.