Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)

Global demand to cure ailments is a growing need. Inula genus extensively holds hundreds of species in warmer regions of Europe and Asia. It is being well-known for its phytochemical and pharmacological applications in industry thanks to its anti-inflammatory and antimicrobial interests. However, growth and production of Inula in the cuttingedge industry is commonly influenced by salt stress except for the halophyte species such as the Inula crithmoides. Salt tolerance level by means of changes in osmoregulation and antioxidant systems in an herbaceous perennial Inula plant has been biochemically evaluated here. Both salt stress treatments caused photosynthetic pigments’ degradation, increase in the leaf levels of osmolytes, and induction of oxidative stress indicated by the malondialdehyde (MDA). Higher hydrogen peroxide (H2O2) amount was recorded in high salt concentration than low salt. High salinity caused an increase in ascorbate (ASC) and glutathione (GSH) contents besides target enzymes of Inula leaves. NaCl tolerance of Inula also was found comprehensible through the higher concentrations of proline and to a lesser extent, total soluble sugar. Salt tolerance mechanisms of this rich bioresourse needs to be further studied in detail for herbal medicines in pharma sector.

___

AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7: 276.

Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant physiology 24: 1-15.

Ashraf, M., and Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.

Bates, L., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.

Demiral, T., and Türkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247-257.

Dhindsa, R. S., and Matowe, W., 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32: 79-91.

Foyer, C. H., Rowell, J., Walker, D., 1983. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239-244

Foyer, C. H., and Noctor, G., 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11(4): 861-905.

Foyer, C. H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.

Griffith, O. W., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2- vinylpyridine. Analytical Biochemistry 106: 207-212.

Hayes, J. D., McLellan, L. I., 1999. Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radical Research 31: 273-300.

Hossain, M. S., and Dietz, K. J., 2016. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in plant science, 7: 548.

Katarina, S., Jajoo, A., Guruprasad, K. N., 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Journal of Photochemistry and Photobiology B: Biology 137: 55-66.

Karimi, H., Yusef-Zadeh, H., 2013. The effect of salinity level on the morphological and physiological traits of two grape [Vitis vinifera L.] cultivars. International Journal of Agronomy and Plant Production 4:1108-1117.

Kaur, H., Bhatla, S. C., 2016. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42-53.

Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., Vicente, O., 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.) PLoS ONE 12(9): e0185017. https://doi.org/10.1371/ journal.pone.0185017

Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., Antonio, F. T., 2015. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology & Biotechnology 2: 579-610.

Maruta, T., Noshi, M., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S., 2012. H2O2- triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. The Journal of Biological Chemistry, 6:287(15): 11717-29.

Nikalje, G. C., Variyar, P. S., Joshi, M. V., Nikam, T. D., Suprasanna, P., 2018. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) PLoS ONE 13(4): e0193394.

Pardo-Domènech, L. L., Tifrea, A., Grigore, M. N., Boscaiu, M., Vicente, O., 2016. Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems 150: 904-915.

Potters, G., Horemans, N., Bellone, S., Caubergs, R. J., Trost, P., Guisez, Y., Asard, H., 2004. Dehydroascorbate influences the plant cell cycle through a glutathioneindependent reduction mechanism. Plant Physiology 134(4): 1479-1487.

Ross, A. F., 1959. Dinitrophenol method for reducing sugar, potato processing. Potato Processing, 1:492- 493

Sales, C. R. G., Ribeiro, R. V., Silveira, J. A. G., Machado, E. C., Martins, M.O., Lagôa,. A. M., 2013. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiology and Biochemistry 73: 326-336.

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., Vicente, O., 2015. Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS ONE 10(8): e0135419.

Shinozaki, K., and Yamaguchi-Shinozaki, K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221- 227.

Singh, M., Kumar, J., Singh, S., Singh, V. P., Prasad, S. M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology 14: 407- 426.

Smeekens, S., 2000. Sugar-induced signal transduction in plants. Annual review of plant physiology and plant molecular biology 51: 49-81.

Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. South African Journal of Botany 105: 306-312.

Urbanek, H., Kuzniak-Gebarowska, E., Herka, K., 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase. Acta Physiologiae Plantarum 13:43-50.

Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science 151: 59-66.

Wu, J., Tang, C., Yao, S., Zhang, L., Ke, C., Feng, L., Lin, G., Ye, Y., 2015. Anti-inflammatory inositol derivatives from the whole plant of Inula cappa. Journal of Natural Products 78:2332-2338.

Xiang, C., Werner, B. L., Christensen, E. M., Oliver, D. J., 2001. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126(2): 564-574.

Yang, Y., Wei, X., Shi, R., Fan, Q., An, L., 2010. Salinityinduced physiological modification in the callus from halophytes Nitraria tangutorum Bobr. Journal of Plant Growth Regulation 29: 465-476.

Zhou, S. Z., Guo, K., Elbaz, A. A., Yang, Z. M., 2009. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany 65: 27-34.
Alınteri Zirai Bilimler Dergisi-Cover
  • ISSN: 2564-7814
  • Başlangıç: 2007
  • Yayıncı: Adem Yavuz SÖNMEZ
Sayıdaki Diğer Makaleler

Effects of Rhizobacteria on Plant Development, Quality of Flowering and Bulb Mineral Contents in Hyacinthus orientalis L.

FAZİLET PARLAKOVA KARAGÖZ, ATİLLA DURSUN, RECEP KOTAN

Organic Agriculture Potential of Eastern Black Sea Region

MELİH OKCU, BESİM KARABULUT

Determination of Yield, Yield Components and Oil Ratio of Some Winter Canola (Brassica napus L.) Cultivars under Semi-Arid Conditions

HASAN HALİLOĞLU, VEDAT BEYYAVAŞ

Soil Erosion Risk Assessment due to Land Use/Land Cover Changes (LULCC) in Bulgaria From 1990 to 2015

EMRE ÖZŞAHİN, İLKER EROĞLU

Comparison of Spray Transfer and Penetration of Different Hydraulic Nozzles at Low Application Volume

BAHADIR SAYINCI, BÜNYAMİN DEMİR, Ruçhan ÇÖMLEK, MUSTAFA GÖKALP BOYDAŞ

Effects of Some Stabilizers on the Textural Properties of Set-Type Yogurt

Emine MACİT, M. Murat KARAOĞLU, İHSAN BAKIRCI

The Evaluation of the Antibacterial Activity of Vetiveria zizanioides (L.) Nash Grown in Giresun, Turkey

Derya EFE

Influence Factors Analysis of Farmers’ Participation in Agricultural Machinery Support Using Random Utility Model in the Agri Province of Turkey

Okan DEMİR

Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)

NECLA PEHLİVAN GEDİK, Neslihan SARUHAN GÜLER

The Effect of Rosehip Seed Supplementation into Laying Hens Diets on Performance, Egg Quality Traits, Yolk Lipid Profile and Serum Parameters

HATİCE KAYA, ADEM KAYA, NURİNİSA ESENBUĞA, MUHLİS MACİT