Marul (Lactuca sativa L.) bitkisinde beyaz çürüklük hastalığına (Sclerotinia sclerotiorum (Lib) de Bary) karşı kök bakterilerinin kullanım olanakları

Marul (Lactuca sativa L.) bitkisinde Sclerotinia sclerotiorum tarafından oluşturulan beyaz çürüklük hastalığı marul ekimini ve üretimini sınırlayan en yaygın ve önemli fungal hastalıklardan biridir. Bu çalışmada farklı türlere ait antagonistik potansiyele sahip kök bakteri izolatları [Lysobacter enzymogenes C3R5 ve N4-7] ile bitki büyümesini teşvik eden kök bakteri (PGPR) izolatlarının [Bacillus pumilus T4, Bacillus amyloliquefaciens IN937a, Pseudomonas fluorescens WCS417r ve Pseudomonas putida 89B-61] marul beyaz çürüklük hastalığına karşı biyolojik mücadele ajanı olarak kullanılabilme olanaklarını araştırılmıştır. Bakteri izolatlarının fungal gelişimi ve hastalık çıkışının engellemesi üzerine olan etkinliği in vitro ve in vivo koşullarında araştırılmıştır. In vitro ikili kültür denemelerinde test edilen bakteriler arasında antagonist L. enzymogenes C3R5 ve N4-7 izolatları patojen gelişimini önemli düzeyde engelleyerek antagonizm gösterirken, PGPR izolatları fungusların miselyal gelişimini engellemede başarılı olamamıştır. In vivo koşullarda ise gerek antagonist gerekse PGPR izolatları marul bitkisinin sağlıklı gelişmesine neden olurken, uygulama yapılmış bitkilerde hastalık oluşumu kontrollerdeki bitkilerle karşılaştırıldığında önemli düzeyde engellediği belirlenmiştir.

Possible use of plant growth promoting rhizobacteria against white mould disease (Sclerotinia sclerotiorum (Lib) de Bary) in lettuce plant (Lactuca sativa L.)

White mould disease, caused by Sclerotinia sclerotiorum, is one of the most important and common fungal diseases which effects production of lettuce (Lactuva sativa) plants. In this study, possible use of antagonist (such as Lysobacter enzymogenes C3R5 and N4-7) and Plant Growth Promoting Rhizobacterial (PGPR) (such as Bacillus pumilus T4, Bacillus amyloliquefaciens IN937a, Pseudomonas fluorescens WCS417r and Pseudomonas putida 89B-61) isolates, as biological control agents, was investigated for their ability to suppress white mould disease of lettuce (Lactuca sativa L. cv. Lital) in vitro and in vivo conditions. During the in vitro experiments, among the rhizobacterial isolates, antagonist L. enzymogenes isolates C3R5 and N4-7 showed antagonistic properties against fungal pathogen and significantly inhibited hyphal growth to a varying degree in dual culture tests. In contrast, PGPR isolates were unable to be successful and showed inconsistent inhibition on mycelial growth.During the in vivo experiments, both antagonist and plant PGPR isolates were evaluated for plant growth promotion and biologic control of disease caused by the fungal agent. Plants treated with each of the six isolates were significantly reduced pre-emergence disease severity compared to untreated controls.

___

  • Abawi, G.S., Grogan, R.G., 1979. Epidemiology of diseases caused by Sclerotinia species.Phytopathology 69: 899–904.
  • Anjum, M.A., Sajjad, M.R., Akhtar, N., Qureshi, M.A., Iqbal, A., Jami, A.R., Hasan, M., 2007.Response of Cotton to Plant Growth Promoting Rhizobacteria (PGPR) Inoculation Under Different Levels of Nitrogen. J. Agric. Res. 45: 135-143.
  • Asaka, O., Shoda, M., 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62: 4081-4085.
  • Bremer, E., Huang, H.C., Selinger, L.J., Davis, J.S., 2000. Competence of Coniothyrium minitans in preventing infection of bean leaves by Sclerotinia sclerotiorum. Plant Pathology Bulletin 9: 69–74.
  • Bruehl, G.W., 1987. Soilborne Plant Pathogens. Macmillan, New York.
  • Budge, S.P., Whipps, J.M., 1991. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology 40: 59–66.
  • Bull, C.T., Weller, D.M., Thomashow, L.S., 1991. Relationship between root colonization and supression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2 79. Phytopathology 81:954-959.
  • Cakmakci, R., Donmez, F., Aydın, A., Sahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry 38: 1482-1487
  • Can, C., Yucel, S., Korolev, N., Katan, T., 2004. First report of fusarium crown and root rot of tomato caused by Fusarium oxysporum f.sp. radicis-lycopersici in Turkey. Plant Pathology 53: 814.
  • Carruthers, F.I., Shum-Thomas, T., Conner, M., Mahanty, H.K. 1995. The significance of antibiotic production by Pseudomonas aureofaciens PA 147-2 for biological control of Phytophora megasperma root of asparagus. Plant and Soil 170:339-344.
  • Chitrampalam, P., Figuli, P.J., Matheron, M.E., Subbarao, K.V., Pryor, B.M., 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in Desert Agroecosystems. Plant Disease 92:1625–1634.
  • Chitrampalam, P., Cox, C.A., Turini, T.A., Pryor, B.M., 2010. Efficacy of Coniothyrium minitans on lettuce drop caused by Sclerotinia minor in desert agroecosystem. Biological Control 55:92-96.
  • Coşkuntuna, A., Yıldız, F., 2007. İzmir ili karanfil seralarında görülen Fusarium solgunluğunun Antagonist fluorescent Pseudomonas’lar ile önlenmesi üzerine araştırmalar. Türkiye II. Bitki Koruma Kongresi Bildirileri, 27-29 Ağustos 2007, Isparta. s, 29.
  • Dixon, G.R., 1984. Vegetable Crop diseases. Macmillan, London.
  • El-Tarabily, K.A., Soliman, M.H., Nassar, A.H., Al-Hassani, H.A., Sivasithamparam, K.,McKenna, F., Hardy, G.E.S., 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathology 49: 573-583.
  • Freitas, J.R., Gupta, V.V.S.R., Germida, J.J., 1993. Influence of Pseudomonas syringae R25 and P. putida on the growth and N2 fixation (acetilene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol. Fertil. Soils. 16:215-220.
  • Gaskins, M.H., Albrech, S.L., Hubbell, D.H., 1985. Rhizosphere bacteria and their use to increase plant productivity: A review. Agric. Ecosyst. Environ. 12:99-116.
  • Kloepper, J.W., Lifshitz, R. Zablotowicz, R.M., 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39–43.
  • Kobayashi, D.Y., El-Barrad, N.E.H., 1996. Selection of bacterial antagonists using enrichment cultures for the control of summer patch diseases in Kentucky bluegrass. Current Microbiology 32:106-110.
  • Kurt, Ş., Erkılıç, A., 1997. Marul’da beyaz çürüklüğe (Sclerotinia sclerotiorum (Lib.) de Bary) karşı sarmısak ekstraktı ve Iprodione’un etkinliğinin belirlenmesi. Çukurova Üniversitesi Ziraat Fakültesi Dergisi 13: 111-119.
  • Landa, B.B., Hervas, A., Bettiol, W., Jimenez-Diaz, R.M. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f.sp.ciceris. Phytoparasitica 25:305-318.
  • Melzer, M.G., Boland, G.J., 1994. Epidemiology of lettuce drop caused by Sclerotinia minor. Canadian Journal of Plant Pathology 16:170–176.
  • Mena-Violante, H.G., Olalde-Portugal, V., 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae 113:103-106.
  • Mert-Türk, F., Mermer, D., 2004. Çanakkale’de örtüaltında yetiştirilen marullarda Sclerotinia sclerotiorum’un yaygınlığının ve miselyal uyum gruplarının saptanması. M.K.Ü. Ziraat Fakültesi Dergisi 9:1-8.
  • Murphy, J.F., Zehnder, G.W., Schuster, D.J., Sikora, E.J., Polston, J.E., Kloepper, J.W., 2000.
  • Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Disease 84:779-784.
  • Okon, Y., Hadar, Y.A., 1987. Microbial inoculants as crop yield enhacers. CRC Crit. Rev. Biotechnol. 6:61-85.
  • Özaktan, H., Bora, T., 2000. Biological control of Fusarium oxysporum f.sp. melonis by the formulations of fluorescent Pseudomonads. Journal of Turkish Phytopathology 29: 133-149.
  • Pal, K.K., Tilak, K.V.B.R., Saxena, A.K., Dey, R., Singh, C.S., 2000. Antifungal characteristics of a fluorescent Pseudomonas strains involved in the biological control of Rhizoctonia solani. Microbiol Research 155: 233-242.
  • Phillips, A.J.L., 1986. Factors affecting the parasitic activity of Gliocladium virens on the sclerotia of Sclerotinia sclerotiorum and a note on its host range. Journal of Phytopathology 116:212–220.
  • Piao, C.G., Tang, W.H., Chen, Y.X., 1992. Study on the biological activity of yield-increasing bacteria. China J. Microbiol. 4: 55–62.
  • Pieterse, C.M.J., Van Pelt, J.A., Van Wees, S., Ton, J., Van Loon, L.C., 2001. Rhizobacteriamediated induced systemic resistance: triggerring signalling and expression. European Journal of Plant Pathology 107:51-61.
  • Rabeendran, N., Jones, E.E., Moot, D.J., Stewart, A., 2006. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biological Control 39:352–362.
  • Siddiqui, I.A., Ehetshamul-Haque, S., Shaukat, S.S., 2001. Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. Journal of Phytopathology 149: 337-346.
  • Singleton, L.L., Mihail, J.D., Rush, C.M., 1992. Methods for research on soilborne phytopathogenic fungi. APS Press. St. Paul, Minnesota.
  • Soylu, S., Kurt, Ş., 2001. Occurrence and distribution of fungal diseases on greenhouse grown pepper plants in Hatay Province. International XIth EUCARPIA Meeting on Genetics and Breeding of Capsicum & Eggplant, 2001, Antalya-Turkey. pp 315-319.
  • Soylu, S., Soylu, E.M., Kurt, Ş., Ekici, Ö.K., 2005. Antagonistic potentials of rhizosphereassociated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences 8: 43-48.
  • Soylu, S., Yetişir, H., Nevfel, M., Karaca, F., 2008. Bitki gelişimini teşvik eden kök bakterilerinin marul (Lactuca sativa L.) yetiştiriciliğinde kullanılma olanakları. VII. Sebze Tarımı Sempozyumu, 26-29 Ağustos 2008 Yalova, s. 113.
  • Staub, T., 1991. Fungicide resistance; practical experience with antiresistance strategies and the role of integrated use. Annual Review of Phytopathology 29: 421-442.
  • Subbarao, K.V., 1998. Progress toward integrated management of lettuce drop. Plant Disease 82:1068-1078.
  • Tuncer, G., Erdiller, G., 1990.The identification of Rhizoctonia solani Kuhn anastomosis groups isolated from potato and some other crops in Central Anatolia. Journal of Turkish Phytopathology 19: 89-93.
  • Xiao, K., Kinkel, L.L., Samac, D.A., 2002. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biological Control 23: 285-295.
  • Wei, G., Kloepper, J.W., Tuzun, S., 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant-growth promoting rhizobacteria under field conditions. Phytopathology 86: 221–224.
  • Whipps, J.M., Budge, S.P., 1990. Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycological Research 94: 607–661.
  • Yıldız, A., Doken, M.T., 2002. Anastomosis group determination of Rhizoctonia solani Kuhn(Telemorph: Thanatephorus cucumeris) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars. Journal of Phytopathology 150:526-528.
  • Yolageldi, L., Özaktan, H., Akköprü, A., Akat, S., 2007. Hıyarda Rhizoctonia solani’den kaynaklanan çökertene karşı bakteriyel ve fungal antagonistlerin kullanılması. Türkiye II. Bitki Koruma Kongresi Bildirileri, 27-29 Ağustos 2007, Isparta. s. 33.
  • Yücel, S., 1994. Akdeniz bölgesi örtü altı sebze alanlarında görülen fungal hastalıklar. Plant Protection Bulletin 34:23-34.
  • Zahir, Z.A., Arshad M., Frankenberger, W.T., 2003. Plant growth promoting rhizobacteria:Applications and perspectives in Agriculture. Advances in Agronomy 81: 97-168.
  • Zhang, F., Dashti, N., Hynes, R.K. Smith, D.L., 1997. Plant growth promoting rhizobacteria and soybean [Glycine max (L) Merr.] growth and physiology at suboptimal root zone temperatures. Annual Botany 79:243–249.