Karbon Nanotüp (KNT) İlave Edilmiş Poliakrilonitril (PAN) Nanoliflerin Elektroeğirme Yöntemi ile Üretilmesi ve Karakterizasyonu

Bu çalışmada elektroeğirme yöntemi ile karbon nanotüp (KNT) ilave edilmiş poliakrilonitril (PAN) nanolif üretimi rapor edilmiştir. Boncuksuz ve düzenli PAN/KNT elektroeğirme yöntemi ile elde edilmişnanofiberler elde etmek için beş farklı KNT konsantrasyonu (0.05, 0.1, 0.2, 0.5 ve %1 ağırlık) denenmişve nanolifleri karakterize etmek için Taramalı Elektron Mikroskobu (SEM), Raman ve X-Işını Difraksiyonu (XRD) analizleri kullanılmıştır. Sonuçlar, artan KNT konsantrasyonu ile PAN/KNT nanoliflerinin çapınınarttığını ve optimum bir konsantrasyondan sonra nanolifler üzerinde bazı düzensiz bölgeler ve boncuklanmaların oluştuğunu göstermiştir. Bununla birlikte, KNT'lerin eklenmesi, PAN nanoliflerinin grafitizasyonunu ve kristalliğini arttırmıştır. Boncuksuz ve kristalizasyon seviyesi yüksek PAN/KNT nanolifler için optimum KNT konsantrasyonu ağırlıkça %0.1 olarak bulunmuştur.

Carbon Nanotube (CNT) Embedded Polyacrylonitrile (PAN) Electrospun Nanofibers Production and Characterizations

Carbon nanotube (CNT) embedded polyacrylonitrile (PAN) nanofibers production by electrospinning method was reported in this study. Five different CNT concentrations (0.05, 0.1, 0.2, 0.5, and 1wt%) were tried to obtain beadless and regular PAN/CNT electrospun nanofibers. Scanning Electron Microscopy (SEM), Raman and X-Ray Diffaraction (XRD) analyses were utilized to characterize nanofibers. The results indicated that with increasing CNT concentration, the diameter of PAN/CNT nanofibers increased, and after an optimum concentration some disordered sites and beads were observed on the nanofibers. However, the addition of CNTs enhanced the graphitization and crystallinity of PAN nanofibers. The optimum CNT concentration for beadless and high crystalline PAN/CNT nanofibers was found as 0.1 wt

___

  • Bhardwaj, N. and S. C. Kundu, (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 28(3): 325-347.
  • Chinnappan, A., et al. (2017). An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. Journal of Materials Chemistry C 5(48): 12657-12673.
  • Dresselhaus, M. S., et al. (2005). Raman spectroscopy of carbon nanotubes. Physics reports 409(2): 47-99.
  • Gorji, M., et al. (2017). Electrospun nanofibers in protective clothing. Electrospun nanofibers, Elsevier: 571-598.
  • Guerrero-Pérez, M. O. (2021). "Research progress on the applications of electrospun nanofibers in catalysis." Catalysts 12(1): 9.
  • Ince Yardimci, A., et al. (2019). CNT incorporated polyacrilonitrile/polypyrrole nanofibers as keratinocytes scaffold. Journal of Biomimetics, Biomaterials and Biomedical Engineering, Trans Tech Publ.
  • Ince Yardimci, A., et al. (2019). Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds. Journal of biomaterials applications 34(5): 640-650.
  • Ince Yardimci, A., et al. (2022). Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Applied Physics A 128(3): 1-12.
  • Jang, D., et al. (2021). Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Composites science and technology 212:108866
  • Jung, E. H., et al. (2011). Electrical conductive CNTPVA/PC nanocomposites with high tensile elongation. Journal of nanoscience and nanotechnology 11(1): 597-601.
  • Kaur, N., et al. (2016). Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. SpringerPlus 5(1): 1-7.
  • Kim, J. A., et al. (2006). Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10): 1898-1905.
  • Kivrak, E., et al. (2020). Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Analytical and Bioanalytical Chemistry 412(28): 7851-7860.
  • Kumar, T. S. M., et al. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175: 107074.
  • Li, W. J., et al., (2002). Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of biomedical materials research 60(4): 613-621.
  • Matsuno, R., et al. (2020). Relationship between the Relative Dielectric Constant and the Monomer Sequence of Acrylonitrile in Rubber. ACS omega 5(26): 16255-16262.
  • Park, J.-M., et al., (2016). Mechanical and electrical properties of electrospun CNT/PVDF nanofiber for micro-actuator applications. Advanced Composite Materials 25(4): 305-316.
  • Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 43(3): 61-102.
  • Ramakrishna, S., et al. (2010). Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. Journal of Materials Science 45(23): 6283-6312.
  • Son, Y. J., et al. (2014). Therapeutic applications of electrospun nanofibers for drug delivery systems. Archives of pharmacal research 37(1): 69-78.
  • Spinks, G. M., et al. (2006). Carbon‐Nanotube‐Reinforced Polyaniline Fibers for High‐Strength Artificial Muscles. Advanced Materials 18(5): 637-640.
  • Spitalsky, Z., et al. (2010). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science 35(3): 357-401.
  • Yao, X., et al., (2007). Carbon nanotube/poly (methyl methacrylate)(CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chemistry–A European Journal 3(3): 846-853.
  • Yardimci, A. I., et al., (2022). Synthesis and air permeability of electrospun PAN/PVDF nanofibrous membranes. Research on Engineering Structures and Materials.
  • Yardimci, A. I., et al., (2013). Development of electrically conductive and anisotropic gel-coat systems using CNTs. Progress in Organic Coatings 76(6): 963-965
  • Yardimci, A. İ. and Ö. TARHAN ELECTROSPUN PROTEIN NANOFIBERS AND THEIR FOOD APPLICATIONS. Mugla Journal of Science and Technology 6(2): 52-62.
  • Yardimci, A. I., et al., (2015). The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst. Diamond and Related Materials 60: 81-86.
  • Zhang, B., et al., 2016. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science 76: 319-380.
  • Zhang, Q. and C. D. Vecitis, 2014. Conductive CNTPVDF membrane for capacitive organic fouling reduction. Journal of Membrane Science 459: 143-156.
  • Zheng, W., et al., 2011. Artificial muscles based on polypyrrole/carbon nanotube laminates. Advanced materials 23(26): 2966-2970