Floroetilenpropilen (FEP)/Grafen Hidrofobik Kaplamaların Üretim Parametrelerinin Optimizasyonu

Akışkan madde taşıyan yüzeylerin hidrofobik malzemelerle kaplanması sürtünme faktörünün azaltılmasında etkili sonuçlar göstermektedir. Bu çalışmada hidrofobik özellik sergileyen floroetilenpropilen (FEP) malzemenin hidrofobik davranışını artırmak için ilave edilen nano grafen katkısının üretim parametrelerinden katkı oranı, kürleme sıcaklığı ve kürleme süresi parametreleri optimize edilmiştir. Optimize edilen üç parametre için üç farklı seviye literatür kaynaklarından belirlenmiştir. Bu seviyeler grafen katkı oranları için ağırlıkça %1, %2, %3, kürleme sıcaklıkları için 200 ˚C, 300 ˚C, 400 ˚C ve kürleme süreleri için ise 30 dak, 40 dak, 50 dak olarak uygulanmıştır. L9 Taguchi dizisine uygun şekilde AISI 304 sac malzeme yüzeylerine floroetilenpropilen/grafen karışımı uygulanmış ve kürleme işlemi fırında tamamlanmıştır. Optimizasyon işlemi yüzeylere bırakılan su damlasının temas açıları yanıtlarına göre gerçekleştirilmiştir. Floroetilenpropilen içerisine ilave edilen grafenin optimum katkı oranı %1, kürleme sıcaklığının optimum değeri 400 ˚C ve kürleme süresinin optimum değerinin ise 40 dak olduğu tespit edilmiştir. Varyans analizinden temas açıları üzerinde en etkili parametrenin %96.78 oranla kürleme sıcaklığı olduğu belirlenmiştir. Floroetilenpropilen kaplama malzemesine ilave edilen katkılara optimum üretim parametrelerin uygulanması pompa, türbin, tesisat vb. uygulamalarda enerji tasarrufuna katkıda bulunabileceği sonucuna varılmıştır.

Optimization of Manufacturing Parameters for Fluorinated Ethylene Propylene (FEP)/Graphene Hydrophobic Coatings

The coating of surfaces carrying fluid with hydrophobic materials has shown effective results in reducing friction factors. In this study, the optimization of manufacturing parameters, including the additive ratio, curing temperature, and curing time was conducted to enhance the hydrophobic behavior of fluorinated ethylene propylene (FEP) material by incorporating nano graphene additives. Three different levels for the optimized parameters were determined based on the literature sources. These levels were set as 1% wt, 2% wt, and 3% wt for graphene additive ratios, 200 ˚C, 300 ˚C, and 400 ˚C for curing temperatures, and 30 min, 40 min, and 50 min for curing times. Following the L9 Taguchi design, the FEP/graphene mixture was applied to AISI 304 stainless steel surfaces, and the curing process was completed in an oven. The optimization process was performed based on the response of water droplet contact angles on the surfaces. The optimum graphene additive ratio was determined as 1%, the optimum curing temperature was 400 ˚C, and the optimum curing time was found to be 40 min. Variance analysis revealed that the curing temperature had the most significant effect on the contact angles with a contribution rate of 96.78%. Applying the optimal manufacturing parameters to the FEP coating material with added additives can contribute to energy savings in applications such as pumps, turbines, and pipelines.

___

  • Akinlabi, E.T., Baruwa, A.D., Oladijo, O.P., Maledi, N. and Chinn, J., 2019. Characterization of Hydrophobic Silane Film Deposited on AISI 304 Stainless Steel for Corrosion Protection. Journal of Materials Engineering and Performance, 28(10), 6330-6339.
  • Ayyagari, S.V.G., Daware, S.V. and Rai, B., 2021. Data-driven approach to optimize composition and process parameters of hydrophobic coating formulation, Surfaces and Interfaces, 23, 100972.
  • Bansal, A., Singh, J. and Singh, H., 2020. Erosion behavior of hydrophobic polytetrafluoroethylene (PTFE) coatings with different thicknesses, Wear, 456, 203340.
  • Barhoumi, N., Khlifi, K., Maazouz, A. and Lamnawar, K., 2022. Fluorinated ethylene propylene coatings deposited by a spray process: mechanical properties, scratch and wear behavior. Polymers, 14(2), 347. Chen, X., Dai, C., Zhang, T., Xu, P., Ke, W., Wu, J., Qui, M., Fu, K. and Fan, Y. 2022. Efficient construction of a robust PTFE/Al2O3 hydrophobic membrane for effective oil purification. Chemical Engineering Journal, 435, 134972.
  • Choo, J.H., Spikes, H.A., Ratoi, M., Glovnea, R. and Forrest, A. 2007. Friction reduction in low-load hydrodynamic lubrication with a hydrophobic surface. Tribology International, 40(2), 154-159.
  • Lin, K., Zang, D., Li, X. and Geng, X., 2016. Superhydrophobic polytetrafluoroethylene surfaces by spray coating on porous and continuous substrates, RSC Advances, 6(52), 47096-47100.
  • Ma, Y., Cao, X., Feng, X., Ma, Y. and Zou, H., 2007. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer, 48(26), 7455-7460.
  • Nemati, N., Emamy, M., Yau, S., Kim, J.K. and Kim, D.E., 2016. High temperature friction and wear properties of graphene oxide/polytetrafluoroethylene composite coatings deposited on stainless steel, RSC Advances, 6(7), 5977-5987.
  • Özakın, B. and Kurgan, N., 2022. AISI 304 paslanmaz çelik sac malzemelere temper haddeleme ile pürüzlülük transferinde haddeleme parametrelerinin etkisinin incelenmesi. Politeknik Dergisi, 25(3), 1201-1209.
  • Pehlivan, M. and Özbey, M. 2022. Hidrofobik Yüzeylerin Türbülanslı Boru Akımlarında Sürtünme Kayıplarına Etkisinin Deneysel İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(3), 1383-1397.
  • Sun, W., Liu, X., Liu, K., Xu, J., Lu, Y. and Ye, J., 2021. Mechanochemical functionality of graphene additives in ultralow wear polytetrafluoroethylene composites, Carbon, 184, 312-321.
  • Takahashi, T., Hirano, Y., Takasawa, Y., Gowa, T., Fukutake, N., Oshima, A., Tagawa, S. and Washio, M., 2011. Change in surface morphology of polytetrafluoroethylene by reactive ion etching, Radiation Physics and Chemistry, 80(2), 253-256.
  • Tanaka, K. and Kawakami, S., 1982. Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites. Wear, 79(2), 221-234.
  • Voronov, R.S., Papavassiliou, D.V. and Lee, L.L., 2007. Slip length and contact angle over hydrophobic surfaces. Chemical Physics Letters, 441(4-6), 273-276.
  • Wang, H., Chen, E., Jia, X., Liang, L. and Wang, Q., 2015. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces, Applied Surface Science, 349, 724-732.
  • Wang, L.T., Wang, R.Z., Zhu, L.N., Yue, W., Kang, J.J., Fu, Z.Q., She, D.S, Feng, M.G. and Wang, C.B., 2022. Hydrophobicity and wear resistance of textured carbon fiber/polytetrafluoroethylene composite coatings, Journal of Materials Engineering and Performance, 31, 9200-9208.
  • Wu, H., Zhu, L.N., Yue, W., Fu, Z.Q. and Kang, J.J., 2019. Wear-resistant and hydrophobic characteristics of PTFE/CF composite coatings, Progress in Organic Coatings, 128, 90-98.
  • Yumurtaci, Z. and Sarigul, A., 2011. Santrifüj pompalarda enerji verimliliği ve uygulamaları. Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi, 49-58.