Cam Elyaf Takviyeli Termoset Kompozit Atıkların Geri Dönüşüm Yöntemlerinin İncelenmesi

Termoset reçine matrisli cam fiber takviyeli kompozitler istenilen mekanik özellikleri karşılamaları, hafiflikleri, korozyona karşı dirençli olmaları, kolay üretilebilirlikleri, esnek tasarım özellikleri ve çevresel etkilere karşı dayanıklı olmaları gibi avantajları nedeniyle tüm dünyada gün geçtikçe artan alan ve miktarlarda kullanılmaktadır. Termoset reçinelerin içerdikleri yoğun çapraz bağlar nedeniyle ısı ile yeniden şekillendirilmesi mümkün değildir. Bu özellikleri nedeniyle termoset reçine matrisli kompozit malzemeler kullanım ömürleri sonunda ekolojik ve çevresel açıdan sorun oluşturmaktadır. Bu çalışmada endüstride yaygın olarak kullanılan TsGFRP (Cam Elyaf Takviyeli Termoset Polimer) kompozit malzemelerin servis ömürlerini tamamladıklarında oluşan atıkların geri dönüşüm özellikleri incelenmiştir. Günümüzde farklı ihtiyaçların karşılanmasına yönelik çok farklı özelliklere sahip malzemeler tasarlanmakta ve büyük miktarlarda üretilmektedir. Bununla birlikte artan atık yükünün bertarafı konusunda sürdürülebilir çözümler üretilmesi vazgeçilmez bir gereklilik olarak karşımıza çıkmaktadır. TsGFRP kompozit malzemelerin geridönüşümü konusunda çeşitli çalışmalar yapılmıştır. Ancak bugüne kadar yapılan çalışmalar maliyet ve kazanım açısından değerlendirildiğinde etkin ve sürdürülebilir bir yöntem oluşturulabilmiş ve yaygın bir kullanım alanı sağlanabilmiş değildir. Bu bağlamda yeni araştırmalar yapılarak servis ömürlerini tamamlamış TsGFRP kompozit malzemelerin yeniden kullanımları ve geridönüşümlerine yönelik sürdürülebilir çözüm yöntemlerinin araştırılmasının öncelikli bir gereklilik olduğu anlaşılmıştır.

An Investigation on Recycling of the Glass Fiber Reinforced Thermoset Composite Wastes

− Thermosetting resin matrix glass fiber reinforced composites are used in increasing areas and quantities all over the world due to their advantages such as meeting the desired mechanical properties, lightweight, resistant to corrosion, easy production, flexible design features, and resistant to environmental effects. However, it is not possible to reshape thermoset resins with heat due to the cross-linked networks. Due to these properties, composite materials with thermo-setting resin matrix cause ecological and environmental problems at the end of their life of usage. In this study, the recycling properties of end-of-life TsGFRP (Glass Fiber Reinforced Thermoset Polymer) composite waste materials, which are widely used in the industry were investigated. Today, materials with different properties are designed and produced in large quantities to meet advanced needs. However, it is an indispensable necessity to produce sustainable solutions for the disposal of the increasing waste load. Various studies have been carried out on the recycling of TsG-FRP composite materials. Unfortunately, the studies carried out so far, evaluated in terms of cost and gain, an effective and sustainable method has not been established and a widespread usage area has not been achieved. In this context, it has been understood that researching sustainable solution methods for the reuse and recycling of end-of-life TsGFRP comosite waste materials is a priority requirement in new studies.

___

  • Akesson, D., Foltynowicz, Z., Christeen, J. and Skrifvars, M., 2013. Products obtained from decomposition of glass fiber-reinforced composites using microwave pyrolysis. Polymery Polimery/Polymers, 2013, 58(7-8): p. 582-586.
  • Bernates, R., Dagreu S., A. Despax-Ferreres, Barasinski, A., 2021. Recycling of fiber reinforced composites with a focus on thermoplastic composites. Cleaner Engineering and Technology (Elsevier). Vol. 5, 100272.
  • Beycioğlu, A., Kaya, O., Yıldırım, Z. B., B, Bağrıaçık., Dobiszewska, M., Morova, N. and Çetin, S., 2020. Use of grp pipe waste powder as a filler replacement in hot-mix asphalt. Materials, Oct 2020, Vol. 13 (20), p. 4630 15p.
  • Cunliffe, A. M. and Williams, P., 2003. Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis. Fuel (Elsevier). Dec 2003 Vol. 82 (18) p.2223-2230.
  • Demirel, Ü., 2008. Desinging of hydrostatic pressure testing machine in high flow sytem. MSc Thesis. Yıldız Technical University, Institute of Science, Istanbul, 115
  • Ianasi, C., 2020. Aspects regarding reinforcement with composite materials. Annals of 'Constantin Brancusi' University of Targu-Jiu. Engineering Series. Issue 2, p157-160. 4p. Romania.
  • Kaya, A. İ., 2016. Composite Materials and their properties. Putech-Composites, Vol:3, p.38-45.
  • Khan, M. A. and Kumar, A.S., 2010. Machinability of glass fibre reinforced plastic (gfrp) composite using alumina-based ceramic cutting tools. Journal of Manufacturing Processes (Elsevier), Vol. 13 (2011) p. 67–73.
  • Kutluata, G., 2009. Studies on The Recycling of Glass Fiber Reinforced Polyester Resin Composite, MSc Thesis, Ege University Graduate School of Applied and Natural Sciences, Izmir, 51.
  • Memioğlu, F. and Dağlı E., 2019. Utilization of glass fiber reinforced polyester (GFRP) waste in concrete production. 10th International Concrete Congress. Bursa-Turkey.
  • Ming, Y., Chen, P., Li, L., Gan, G.and Pan, G., 2021. A comprehensive review on the utilization of recycled waste fibers in cement-based composites. Materials, Jul 2021, Vol. 14 (13), p.3643 28p. 2 Nouigues, A., E, Le Gal La Salle., and Bailleul, J-L., 2020. Thermo-mechanical characterization of unsaturated polyester/glass fiber composites for recycling. International Journal of Material Forming. (2021) Vol. 14, p. 153-174.
  • Oliveux, G., Bailleul, J-L. and E, Le Gal La Salle., 2012. Chemical recycling of glass fibre reinforced composites using subcritical water. Composite Part A: Applied Science and Manufacturing (Elsevier) Vol. 43 (11) p. 1809-1818. Özüyağlı, A., Mehmetalioğlu C., Özsoy and M., Akıncı, A., 2016. Investigation of mechanical properties of gfrp pipe production waste filled pvc matrix composites. Journal of the Faculty of Engineering and Architecture of Gazi University. Vol. 31, No 2, p. 465-472
  • Post, W., A, Susa., Blaauw, R., Molenveld, K. and Knoop, R.J.I., 2020. A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications. Polymer reviews. Vol. 60 (2), p. 359–388.
  • Ribeiro, M.C.S., Fiúza, A., Meira-Castro, A.C., Silva, F.G., Meixedo, J.P. and Dinis, M.L., 2014. A case study undertaken recycling & reuse of glass fiber reinforced thermoset polymer wastes of composite materials industry. Materials Science Engineering.
  • Sabau, E., Balc, N., Bere, P., Bere and Nemeş, O., 2012. New Materials From Waste Glass Fibre. Studia Universitatis Babes-Bolyai, Chemia. Dec 2012, Vol. 57 (4), p. 201-208.
  • Shuaib, N.A. and Mativenga, P.T., 2016. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. Journal of Cleaner Production Vol. 120, p. 198-206.
  • Sönmez, M., 2009. The importance and future of poymeric composites in industrial product design: A study on four companies from Turkey. MSc Thesis, Istanbul Technical University, Institute of Science, Istanbul, 183. Ulewics, M., 2021. Recycled materials for concrete and other composites. Materials, May 2021, 14 (9), p.2279 3p. Yıldız, S., Karaağaç, B. and Güzeliş, S.G., 2020 Utilization of glass fiber reinforced polymer wastes. Polymer Composites. 2021; Vol. 42: p.412–423.