Real-Time eXtended (RTX) Konum Doğruluğuna Etki Eden Bazı Faktörlerin İstatistiksel Analizi

Uydu teknikleri ile konum belirleme günümüzde en çok kullanılan konum belirleme tekniği olmuştur.Uydu konumlama doğası gereği birçok parametreden etkilenir. Bu etkilerin bir kısmı elimineedilebilirken bir kısmının da modellenmesi ve sonuç üzerindeki etkilerinin araştırılması gerekir. Deneytasarımı birçok farklı parametreden etkilenen mühendislik çalışmalarında önemli avantajlargetirmektedir. Bu çalışma uydularla konum belirlemede etkili olduğu bilinen 3 parametrenin 2 farklıseviyelerdeki çözümünün yatay ve düşey konum hatasına etkisini araştırmayı amaçlamaktadır. Buamaçla ölçü sezonu, uydu sayısı ve konum duyarlık kaybı (PDOP) bağımsız parametreler olarakseçilmiştir. Uygulama verisi olarak bahar ve yaz 2018 dönemlerinde Samsun’dan Kırıkkale’ye uzananbölgede yirmişer kilometre aralıklarla tesis edilen 14 noktada gerçekleştirilen Uydularla GlobalNavigasyon Sistemleri (GNSS) gözlemleri kullanılmıştır. Bu gözlemlerde Trimble firması tarafındankullanıma sunulan CenterPoint Real-Time eXtended (RTX) teknolojisinin sağladığı veriler toplanmıştır.Bu verilerden tam faktöriyel deney tasarımı için elde edilen deneyler analiz edilmiş ve parametrelerinRTX konumlama üzerindeki ana ve etkileşimli etkileri araştırılmıştır. Bu araştırma sonucunda, seçilenfaktörlerden tümünün ana etkilerinin %95 güven aralığında anlamlı olduğu tespit edilmiş, ayrıcaetkileşimli etkilerin de sonucu etkileyecek değerlere sahip olduğu ve dikkate alınmaları gerektiğisonucuna varılmıştır.

Statistical Analysis of Some Factors Affecting on the Real-Time eXtended (RTX) Positioning Accuracy

Nowadays, Global Navigation Satellite Systems (GNSS) positioning has become the most used positioning technique. GNSS positioning is inherently affected by many parameters. While some of these effects can be eliminated, some of them should be modeled, and their impact on the result should be investigated. The experimental design brings significant advantages in engineering studies affected by many different parameters. This study is aimed to examine the effect of the GNSS-based solution of 3 parameters at 2 different levels on horizontal and vertical positioning errors. For this purpose, measurement season, the number of satellites, and position dilution of precision (PDOP) were selected as the independent parameters. GNSS observations carried out at 14 points established at 20 km intervals in the region extending from Samsun to Kırıkkale in spring and summer 2018 periods were used as test data. In these observations, data provided by CenterPoint Real-Time eXtended (RTX) technology made available by Trimble company were collected. Experiments obtained from these data for full factorial experiment design were analyzed, and the primary and interactive effects of parameters on RTX positioning were investigated. As a result of this research, it was determined that the main effects of all the selected factors were significant at a 95% confidence interval, and it was concluded that the interactive effects also had values that would affect the result and should be taken into account.

___

  • Alkan, R.M. 2019. Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications. Journal of Spatial Science, 1-9.
  • Alkan, R.M., Erol, S., İlçi, V. and Ozulu, M. 2020a. Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement: Journal of the International Measurement Confederation, 163, 107995, 1-12.
  • Alkan, R.M., Erol, S., Ozulu, I.M. and Ilci, V. 2020b. Accuracy comparison of post-processed PPP and realtime absolute positioning techniques. Geomatics, Natural Hazards and Risk, 11(1), 178-190.
  • Box, G.E.P., Hunter, J.S. and Hunter, W.G. 2005. Statistics of Experimenters. 559, John Wiley & sons. (2nd ed.), 1-672.
  • Brandl, M., Chen, X., Drescher, R., Glocker, M., Landau, H., Nardo, A. and Zhang, F. 2014. Advancing Trimble RTX Technology by adding BeiDou and Galileo. ESA European Navigation Conference (ENC2014), Rotterdam, Netherland, April 14-17, 2014.
  • Çoruh, S., Elevli, S. and Geyikçi, F. 2012. Statistical evaluation and optimization of factors affecting the leaching performance of copper flotation waste. The Scientific World Journal, 758719, 1–8.
  • DeMets, C., Gordon, R.G. and Argus, D.F. 2010. Geologically current plate motions. Geophys. J. Int. 181, 1-80.
  • Dogan, U., Uludag, M. and Demir, D.O. 2014. Investigation of GPS positioning accuracy during the seasonal variation. Measurement: Journal of the International Measurement Confederation, 53, 91- 100.
  • George, M., Rowlands, D., Price, M. and Maxey, J. 2005. The Lean Six Sigma Pocket Toolbook. NewYork, McGraw Hill, 2005.
  • Glocker, M., Landau, H., Leandro, R. and Nitschke, M. 2012. Global precise multi-GNSS positioning with trimble centerpoint RTX. 6th ESA Workshop on Satellite Navigation Technologies: Multi-GNSS Navigation Technologies Galileo’s Here, NAVITEC 2012 and European Workshop on GNSS Signals and Signal Processing, 5-7 December.
  • Gündoğdu, T.K., Deniz, İ., Çalişkan, G., Şahin, E.S. and Azbar, N. 2016. Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology, 36(2), 1–21.
  • İlçi, V. 2019. Accuracy comparison of real-time GNSS positioning solutions: Case study of Mid-North Anatolia. Measurement: Journal of the International Measurement Confederation, 142, 40-47.
  • Ismail, A.A., El-Midany, A.A., Ibrahim, I.A. and Matsunaga, H. 2008. Heavy metal removal using SiO2-TiO2 binary oxide: Experimental design approach. Adsorption, 14, 21–29.
  • Jeff Wu, C.F. and Hamada, M.S. 2009. Experiments: Planning, Analysis, and Optimization, 2, John Wiley and Sons, Hoboken, New Jersey, 1-760. Kahveci, M. 2017. Kinematik GNSS ve RTK CORS Ağları. 2, Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti. 1-156.
  • Kahveci, M. and Yıldız, F. 2018. GNSS Uydularla Konum Belirleme Sistemleri. 10. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti. 1-264.
  • Krzyżek, R. 2013. Verification of applicability of the Trimble RTX satellite technology with xFill function in establishing surveying control networks. Geodesy and Cartography, 62(2), 217–233.
  • Navidi, W. 2008. Statistics for Engineers and Scientists. McGraw-Hill Companies Inc., New York. McGrawHill Education, 2 Penn Plaza, New York, NY 10121. 1-922.
  • Nie, Z., Liu, F. and Gao, Y. 2020. Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solutions, 24(9).
  • Richter, M. 2019. Using PPP Corrections in Precise Realtime Applications: Minding the Gaps. GIM International.
  • Saracoglu, A. and Sanli, D.U. 2020. Effect of meteorological seasons on the accuracy of GPS positioning. Measurement: Journal of the International Measurement Confederation, 152, 107301.
  • Seltman, H.J. 2018. Experimental Design and Analysis. 1- 428. Retrieved from http://www.stat.cmu.edu/~hseltman/309/Book/Boo k.pdf
  • Sisman, A. 2014. AN EXPERIMENTAL DESIGN APPROACH ON GEOREFERENCING. Boletim de Ciências Geodésicas, 20(3), 548–561.
  • Sisman, Y., Elevli, S. and Sisman, A. 2014. A statistical analysis of GPS positioning using experimental design. Acta Geodaetica et Geophysica, 49, 343–355.
  • Sisman, Y., and Bektas, S. 2012. Linear regression methods according to objective functions. Acta Montanistica Slovaca, 17(3), 209-217.
  • Sisman, Y. and Sisman, A. 2017. The Factors Optimization on Georeferencing Analogue Maps. Arabian Journal for Science and Engineering, 42, 2471-2478.
  • Talbot, N., Chen X., Reussner, N., Brandl, M., Nitschke, M., Rodriguez-Solano, C. and Zhang, F. 2016. Trimble RTX orbit determination and user positioning performance with beidou satellites. International Global Navigation Satellite Systems Conference (IGNSS 2016). Sydney, Australia.
  • Zhang, F., Brandl, M., Chen, X., Drescher, R., Glocker, M., Landau, H. Leandro, R., Nitschke, M., Salazar, D. and Weinbach, U. 2013. Trimble CenterPoint RTX – A First Study on Supporting Galileo. The European Navigation Conference 2013, (April 23-25), 1–8. Vienna.
  • Zheng, F., Lou, Y., Gu, S., Gong, X. and Shi, C. 2018. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy, 92, 545-560.
  • İnternet kaynakları
  • 1- https://www.omnistar.com/, (18.11.2020)
  • 2- https://www.globalstar.com/en-us/, (18.11.2020)
  • 3- https://novatel.com/products/correctionservices/terrastar-correction-services, (18.11.2020)
  • 4- https://positioningservices.trimble.com/services/rtx/, (18.11.2020)
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ