Nümerik Fonksiyonların Optimizasyonu için Karşıt Tabanlı Yeni Bir Meta- Sezgisel Algoritma

Bu çalışmada literatürde meta-sezgisel algoritmaların performanslarını artırmaya yönelik yaklaşımlardan biri olan zıt konumlu öğrenme kavramı (OBL), yerçekimsel arama algoritmasına (GSA) iki farklı şekilde uygulanmıştır. Birinci yaklaşım da (ObGSA-1), ilk popülasyonunun oluşturulmasında ajanların yarısı rastgele atanırken, diğer yarısı bu ajanların simetrisine konumlandırılmıştır. İkinci yaklaşımda (ObGSA-2) ise ilk popülasyonda, rastgele olarak oluşturulan bütün ajanların zıt konumları belirlenmiş ve uygunluk değeri daha yüksek olan ajanlarla ilk popülasyon oluşturulmuştur. Bu yaklaşımlarla performans ve kararlılık açısından algoritma iyileştirilmiştir. Ortaya çıkan bu yeni algoritmaya zıt konumlu yerçekimsel arama algoritması (Opposite Based Gravitational Search Algorithm-ObGSA) adı verilmiştir. Performans analizi için ObGSA üç farklı yapıdaki test fonksiyonlarına uygulanmıştır. Bu sonuçlara geliştirilen her iki yaklaşımda (ObGSA-1, ObGSA-2), GSA'ya göre daha iyi sonuçlar vermiştir. İki yaklaşım kendi aralarında değerlendirildiğinde ise ObSA-2 yaklaşımının, ObGSA-1 yaklaşımına göre daha iyi değerler yakaladığı ve daha kararlı bir yapı olduğu sonucuna varılmıştır

A Novel Opposite-Based Meta-Heuristic Algorithm for Numerical Function Optimization

In this study, Opposite Based Learning concept (OBL) which is one of the approaches to increase the performance of meta-heuristic algorithms, has been applied to Gravitational Search Algorithm (GSA). This new algorithm that came out has been called Opposite Based Gravitational Search Algorithm (ObGSA). In the study OBL has been applied to GSA in two different ways and these were called as ObGSA-1 and 2 respectively. In ObGSA-1 while in the first population formation of GSA half of the agent have been assigned randomly, the other half has been located according to the symmetry of these agents. Whereas in ObGSA-2 in the first population the opposite locations of all the agents that were formed randomly have been defined and the first population has been formed with the agents whose compliance value were higher. ObGSA-1 and 2 have been applied to three test functions with different structures successfully for stability and performance analysis. Compared with GSA, ObGSA-1 and 2 have caught better results in shorter time. When the approaches have been evaluated among themselves, the result that has been reached is that ObSA-2 has a better and more stable structure than ObSA-1

___

  • Askarzadeh, A., 2016. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Computers and Structures, 169, 1-12.
  • Cheng, M.Y., Prayogo, D., 2014. Symbiotic organisms search: A new metaheuristic optimization algorithm, Computers and Structures, 139, 98-112.
  • Cura, Tunçhan, 2008. Modern sezgisel teknikler ve uygulamaları. Papatya Yayıncılık, 14-15. Doğan, B., Ölmez, T., 2015. A new metaheuristic for numerical function optimization: Vortex search algorithm, Information Sciences, 293, 125-145. Ergezer, M., Simon, D., and Du, D., 2009.
  • Oppositional biogeography-based optimization, in: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (ICSMC’09), pp. 1009-1014.
  • García, S., Molina, D., Lozano, M., and Herrera, F., 2009. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization, Journal of Heuristics, 15, 617-44.
  • Geem, Z.W., Kim, J.H., and Loganathan, G.V., 2001. A new heuristic optimization algorithm: Harmony search, Simulation, 76 (2), 60-68. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, 1989. Addison-Wesley Publishing Company, Inc.
  • Karaboğa, D., Baştürk, B., 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39 (3), 459-471.
  • Kashan, A.H., 2015. A new metaheuristic for optimization: Optics inspired optimization (OIO), Computers and Operations Research, 55, 99-125. Kaveh, A., Talahatari, S., 2010. A novel heuristic optimization method: Charged system search, Acta Mechanica, 213 (3-4), 267-289.
  • Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, 5. 1942-1948.
  • Li, C., Zhou, J., 2011. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm, Energy Conversion and Management, 52 (1), 374-381. Mirjalili, S., 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems, 89, 228- 249.
  • Nümerik Fonksiyonların Optimizasyonu için Karşıt Tabanlı Yeni Bir Meta-Sezgisel Algoritma, Temurtaş vd. 937
  • Mirjalili, S., 2016. SCA: A sine cosine algorithm for solving optimization problems, KnowledgeBased Systems, 96, 120-133.
  • Mirjalili, S., Lewis, A., 2016. The whale optimization algorithm, Advances in Engineering Software, 95, 51-67.
  • Mirjalili, S., Mirjalili, S.M., and Hatamlou, A., 2016. Multi-verse optimizer: A nature -inspired algorithm for global optimization, Neural Computing and Applications, 27, 495-513.
  • Mirjalili, S., Mirjalili, S.M., and Lewis, A., 2014. Grey wolf optimizer, Advances in Engineering Software, 69, 46-61.
  • Omran, M.G.H., 2009. Using opposition-based learning with particle swarm optimization and barebones differential evolution, Particle Swarm Optimization, Aleksandar Lazinica (Ed.), InTech, 373-384.
  • Rahmani, R., Yusof, R., 2014. A new simple, fast and efficient algorithm for global optimization over continuous search-space problems: Radial movement optimization, Applied Mathematics and Computation, 248, 287-300.
  • Rahnamayan, S., Tizhoosh, H.R., and. Salama, M.M.A., 2008. Opposition-based differential evolution, IEEE Transactions on Evolutionary Computation, 12 (1), 64-79.
  • Rajabioun, R., 2011. Cuckoo optimization algorithm, Applied Soft Computing, 11, 5508-5518. Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S., 2009. GSA: A gravitational search algorithm, Information Sciences, 179 (13), 2232-2248.
  • Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S., 2010. BGSA: Binary gravitational search algorithm, Natural Computing, 9 (3), 727-745. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S., 2011. Filter modeling using gravitational search algorithm, Engineering Applications of Artificial Intelligence, 24, 117-122.
  • Singh, R.P., Mykherje, V., and Ghoshal, S.P., 2013. The opposition-based harmony search algorithm, Journal of the Institution of Engineers (India): Series B, 94 (4), 247-256.
  • Storn, R., Price, K., 1997. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 341-359.
  • Swain, R.K., Sahu, N.C., and Hota, P.K., 2012. Gravitational search algorithm for optimal economic dispatch, Procedia Technology, 6, 411- 419.
  • Tizhoosh. H.R., 2005. Opposition-based learning: A new scheme for machine intelligence, in: Proceedings of International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCAIAWTIC’05), vol. I, pp. 695-701.
  • Zahiri, S.H., 2012. Fuzzy gravitational search algorithm an approach for data miming, Iranian Journal of Fuzzy Systems, 9 (1), 21-37.
  • Zhang, W., Niu, P., Li, G., and Li, P., 2013. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm, Knowledge-Based Systems, 39, 34-44.
  • Zheng, Y.J., 2015. Water wave optimization: A new nature-inspired metaheuristic, Computers and Operations Research, 55, 1-11.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ