Krom Stresine Maruz Kalan Mısırda Dışsal Sistein Uygulamasının Etkileri

Sistein (Cys), kükürt metabolizmasının ilk organik kükürtlü bileşiğidir. Cys dahil kükürt metabolizmasınınürünleri, bitkilerin ağır metal ve oksidatif strese karşı cevaplarında biyolojik fonksiyonlara sahiptir. Bunedenle bu araştırmada, mısır (Zea mays L. cv. Bora) fidelerinin yapraklarında Cys'in krom (Cr) stresininetkilerini hafifletme üzerindeki etkileri araştırılmıştır. Hidroponik olarak yetiştirilen fidelerin köklerine 7gün süreyle Cr stresi (100 μM) ve Cr ile kombine şekilde Cys (500 μM) uygulanmıştır. Cr stresi büyümedeazalma, kloroz ve yapraklarda kıvrılma gibi toksisite semptomlarına neden olmuştur. Cr stresi, bağıl suiçeriğini (BSİ), -aminolevulinik asit dehidrataz (ALAD) aktivitesini, klorofil ve protein içerikleriniazaltmıştır. Diğer taraftan, Cr yapraklarda süperoksit dismutaz (SOD) ve katalaz (CAT) aktiviteleriniazaltırken, peroksidaz (POD) aktivitesini artırmıştır. İlaveten, Cr malondialdehit (MDA) birikimi ve sisteiniçeriğini arttırmıştır. Kök ortamına dışsal Cys uygulaması, büyümedeki Cr teşvikli inhibisyonu azaltmıştır.Dışsal Cys uygulaması Cr stresi koşullarında klorofil birikimini ve sistein içeriğini artırmıştır. Ayrıca Cysuygulaması, SOD ve CAT aktivitelerini arttırmış ve Cr teşvikli MDA birikimini önemli düzeyde azaltmıştır.Bu sonuçlar, dışsal Cys uygulamasının Cr stresinin neden olduğu oksidatif stresin olumsuz sonuçlarınıazalttığını göstermektedir.

Effects of Exogenous Cysteine Application on Maize Exposed to Chromium Stress

Cysteine (Cys) is the first organosulfur compound of sulfur metabolism. The products of sulfur metabolism including Cys have biological functions in responses to heavy metal stress and oxidative stress. In this study, therefore, the effects of Cys on alleviating chromium (Cr) toxicity in the leaves of maize (Zea mays L. cv. Bora) seedlings were investigated. Hydroponically grown seedlings were subjected to Cr stress (100 μM) and in combination with Cys (500 μM) for 7 days. Cr stress resulted in toxicity symptoms such as reduced growth, chlorosis, and rolling in leaves. Cr stress decreased the relative water content (RWC), -aminolevulinic acid dehydratase (ALAD) activity, and chlorophyll and protein contents. On the other hand, Cr decreased activities of superoxide dismutase (SOD) and catalase (CAT) in leaves, while increased the activity of peroxidase (POD). In addition, Cr increased the accumulation of malondialdehyde (MDA) and cysteine contents. Exogenous application of Cys to rooting media alleviated Cr-induced growth suppression. Exogenous Cys promoted the chlorophyll accumulation and cysteine content under Cr stress. Moreover, application of Cys increased the activities of SOD and CAT, and markedly diminished Cr-induced MDA accumulation. These results suggest that the exogenous application of Cys reduced the negative consequences of oxidative stress caused by Cr stress.

___

  • Adhikari, A., Adhikari, S., Ghosh, S., Azahar, I., Shaw, A.K., Roy, D., Roy, S., Saha, S. and Hossain, Z., 2020. Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress. Environmental and Experimental Botany, 169, 103873.
  • Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105, 121–126.
  • Ali, S., Chaudhary, A., Rizwan, M., Anwar, H. T., Adrees, M., Farid, M. and Irshad, M.K., 2015. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 22, 10669–10678.
  • Anjum, S.A., Ashraf, U., Khan, I., Tanveer, M., Shahid, M., Shakoor, A. and Wang, L., 2017. Phyto-toxicity of chromium in maize: Oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere, 27, 262–273.
  • Asada, K., 1992. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum, 85, 235–241.
  • Beauchamp, C. and Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.
  • Bradford, M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.
  • Cai, M., Hu, C., Wang, X., Zhao, Y., Jia, W., Sun, X., Elyamine, A.M. and Zhao, X., 2019. Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil. Environmental Pollution, 249, 716–727.
  • Droux, M., 2004. Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynthesis Research, 79, 331–348.
  • Fang, H., Liu, Z., Jin, Z., Zhang, L., Liu, D. and Pei, Y., 2016. An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis. Environmental Pollution, 213, 870–877.
  • Gaitonde, M.K., 1967. A spectrophotometric method for the direct measurement of cysteine in the presence of other naturally occurring amino acids. Biochemical Journal, 104, 627–633.
  • Gill, R. A., Ali, B., Islam, F., Farooq, M. A., Gill, M. B., Mwamba, T. M. and Zhou, W., 2015. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5- aminolivulinic acid under chromium stress. Plant Physiology and Biochemistry, 94, 130–143.
  • Hayat, S., Ali, B., Hasan, S.A. and Ahmad, A., 2007. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.
  • Heath, R.L. and Packer, L., 1968. Photoperoxidation in isolated chloroplast I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.
  • Hoefgen, R. and Nikiforova, V., 2008. Metabolomics integrated with transcriptomics: assessing systems response to sulfur‐deficiency stress. Physiologia Plantarum, 132, 190–198.
  • Mauzerall, D. and Granick, S., 1956. The occurrence and accumulation of -aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry, 219, 435–446.
  • Mika, A. and Lüthje, S., 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489– 1498.
  • Naito, K., Ebato, T., Endo, Y. and Shimizu, S., 1980. Effect of benzyladenine on -aminolevulinic acid synthetic ability and -aminolevulinic acid dehydratase: differential responses to benzyladenine according to leaf age. Zeitschrift für Pflanzenphysiologie, 96, 95–102.
  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., MarquezGarcia, B., Queval, G. and Foyer, C.H., 2012. Glutathione in plants: an integrated overview. Plant Cell and Environment, 35, 454–484.
  • Pandey, V., Dixit, V. and Shyam, R., 2009. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma, 236, 85–95.
  • Qiu, B., Zeng, F., Cai, S., Wu, X., Haider, S. I., Wu, F. and Zhang, G., 2013. Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. Journal of Plant Physiology, 170, 772–779.
  • Qing, X., Zhao, X., Hu, C., Wang, P. and Zhang, Y., 2015. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicology and Environmental Safety, 114, 179–189.
  • Schutzendubel, A. and Polle, A., 2002. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.
  • Seth, C.S., Remans, T., Keunen, E., Jozefczak, K., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J. and Cuypers, A., 2012. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell and Environment, 35, 334–346.
  • Shanker, A.K., Cervantes, C., Loza-Tavera, H. and Avudainayagam, S., 2005. Chromium toxicity in plants. Environment International, 31, 739–753.
  • Shiferaw, B., Prasanna, B.M., Hellin, J. and Baenziger, M., 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3, 307–327.
  • Singh, K.P., Mohan, D., Sinha, S. and Dalwani, R., 2004. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health agricultural and environmental quality in the wastewater disposal area. Chemosphere, 55, 227–255.
  • Takahashi, H., Kopriva, S., Giordano, M., Saito, K. and Hell, R., 2011. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 62, 157–184.
  • Tripathi, D.K., Singh, V.P., Prasad, S.M., Chauhan, D.K., Kishore Dubey, N. and Rai, A.K., 2015. Siliconmediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicology and Environmental Safety, 113, 133–144.
  • Vajpayee, P., Tripathi, R.D., Rai, U.N., Ali, M.B. and Singh, S.N., 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075–1082.
  • Wellburn, A.R., 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.
  • Zhao, X.M., Sobecky, P.A., Zhao, L.P., Crawford, P. and Li, M.T., 2016. Chromium (VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results. Journal of Hazardous Materials, 306, 203–209.