Isıl Enerji Depolama lı Yapıca Kararlı Yeni Bir Faz Değişim Malzemesi Olarak Silikafume /Polietilen Glikol (PEG) Kompoziti

Bu çalışma yapıca kararlı yeni bir faz değişim materyali olarak silikafume / polietilen glikol(PEG) kompozitinin hazırlanması, karakterize edilmesi ve ısıl enerji depolama özelliklerinin belirlenmesi üzerine amaçlanmıştır. Kompozitler PEG'insilikafume içine vakum altında emdirme yöntemiyle hazırlanmıştır. Erimiş PEG silikafume içerisinde akma davranışı göstermeden %30 oranında hapsedilebilmiştir. Üretilen kompozit faz değişim malzemesi (FDM); SEM ve FT-IR analiz teknikleri kullanılarak karakterize edilmiştir. Kompozit FDM'nin ısıl enerji depolama özellikleri DSC analizleri ile belirlenmiştir. DSC analiz sonuçları kompozit FDM'nin erime noktasının ve erime entalpisinin sırasıyla 27.70 oCve 87.09J/g olduğunu göstermiştir. Çok sayıda gerçekleştirilen ısıtma-soğutma döngüleri sonucunda kompozit FDM'lerinin kimyasal olarak kararlı ve enerji depolama özelliklerini önemli düzeyde koruduğunu göstermiştir. TG analiz sonuçları silikafumeye emdirilen PEG'in termal kararlılığının yüksek olduğunu ortaya koymuştur. Kompozit FDM'lerin ısıl iletkenliği farklı oranlarda karbon nano tüp (CNTs) ilave edilerek arttırılmıştır. Ayrıca CNTs ilavesinin kompozit FDM'nin ısıl enerji depolama ve salıverme süreleri üzerindeki etkisi araştırılmıştır.

Silicafume/Polyethylene glycol (PEG) composite as a novel form-stablephase change material for thermal energy storage

This paper is aimed to prepare, characterize, and determine thermal energy storage properties of silicafume/polyethyleneglycol(PEG) composite as a novel form-stable composite phase change material(PCM). The composite PCM was prepared by incorporating PEG in the silicafume by using vacuum impregnation method. The PEG could be retained by 30 wt% into the silicafume without the leakage of melted PEG from the composite. The composite PCM was characterized by using SEM and FT-IR analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC analysis. DSC results showed that the melting temperature and latent heat of the composite PCMs are 27.70 oCand 87.09 J/g, respectively. Thermal cycling test was conducted to determine the thermal reliability of the composite PCM and the results showed that the composite PCM had good thermal energy storage reliability and chemical stability. TG analysis revealed that the impregnated PEG into the silicafume had good thermal stability. Thermal conductivity of the composite PCM was improved by adding carbon nanotubes (CNTs) in different mass fractions. The effect of CNTs addition on the thermal energy storage/release times of the produced composite PCM was also tested.

___

  • Alkan C., Sarı A., Uzun O., 2006. Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage.American Institute of Chemical Engineers Journal,52, 3310-3314.
  • Bar-NesG., Peled Y., Arbel-Haddad M., Zeiri Y., Katz A., 2011. The effect of high saltconcentration on the integrity of silica-fume blended cementitious matrices forwaste immobilization applications.Materials and Structure,44, 291- 297.
  • Fang X., Zhang Z., Chen Z., 2008. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management,49, 718-723.
  • Feldman D., Banu D., Hawes D., Ghanbaria E.,1991. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsumwallboard. Solar Energy Materials,22, 231-242.
  • Feldman D., Banu D., Hawes D.W., 1995. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Solar Energy Materials and Solar Cells,36, 147-157.
  • Hadjieva M., Kanev St., Argirov J.,1992. Thermophysical properties of some paraffins applicable to thermal energy storage. Solar Energy Materials and Solar Cells,27,181-187. Hadjieva M., Stoykov R., Filipova T., 2000.
  • Composite salt-hydrate concrete system for building energy storage.Renewable Energy,19, 111-115.
  • Hamada Y., Fukai J., 2005. Latent heat thermal energy storage tanks for space heating of buildings:comparison between calculations and experiments. Energy Conversion and Management, 46, 3221-3235.
  • Hawes D.W., Feldman D., Banu D.,1993. Latent heat storage in building materials. Energy and Buildings, 20, 77-86.
  • HawesD.H., FeldmanD., 1992. Absorption of PCMs in concrete.Solar Energy Materials and Solar Cells,27, 91-101.
  • Karaipekli A., Sarı A., 2009. Capric-myristic acid/vermiculite composite as form- stable phase change material for thermal energy storage.Solar Energy,83, 323-332.
  • Karaipekli A., Sarı A., Kaygusuz K., 2009. Thermal characteristics of paraffin/ expanded perlite composite for latent heat thermal energy storage.Energy Sources Part A,31, 814-823.
  • Khudhair A., Farid M., Ozkan N., Chen J.,2003. Thermal performance and mechanical testing of gypsum wallboards with latent heat storage, in:Proceedings of Annex 17, Advanced Thermal Energy StorageThrough Phase Change Materials and Chemical Reactions Feasibility Studies and Demonstration Projects. Indore, India,.
  • Mehling H., Hiebier S., Cabeza L.F., 2002. Newson the application of PCMs for heating and cooling of buildings. Advanced thermal energy storage through phase change materials and chemical reactions feasibility studies and demonstration Project. Thirdworkshop,IEA,ECESIAAnnex17,1- 2October, Tokyo, Japan,.
  • NeeperD.A.,2000. Thermal Dynamics of wallboard with latent heats torage. Solar Energy,68, 393- 403.
  • Nomura T., Okinaka N., Akiyama T., 2009. Impregnation of porous material with phase change material for thermal energy storage.Material Chemistry and Physics,115, 846-850.
  • Pielichowski K., Flejtuch K., 2002. Differential scanning calorimetric studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials.Polymers for Advanced Technologies,13, 690-696.
  • RadhakrishnanR., GubbinsK.E., 1999. Free energy studies of freezing in slit pores: an orderparameter approach using Monte Carlo simulation.Molecular Physics,96, 1249-1267.
  • Rozanna D.,Salmiah A.,Chuah T.G., Medyan R., ThomasChoong S.Y., Sa'ariM., 2005. A study on thermal characteristics of phase change material(PCM) in gypsum board for building application. Journal of Oil Palm Research,1 7, 41-46.
  • Sarı A., Karaipekli A., Kaygusuz K., 2008. Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage. International Journal of Energy Resources, 32, 154-160.
  • Schossig P., Henning H.M., Gschwander S., Haussmann T.,2005. Microencapsulated phase change materials integrated into construction materials. Solar Energy Materials and Solar Cells,89, 297-306.
  • Schossig P., Henning H.M., Haussmann T., Raicu A.,2003Encapsulated phase change materials integrated into construction materials, in:Proceedings of the Ninth International Conference on Thermal Energy Storage ''Futurestock 2003''. Warsaw, Poland, September.
  • SoltanM.E.,RagehH.E., RagehN.M.M.E., 2005. Experimental approaches and analytical technique for determining heavy metals in fallen dust at ferrosilicon production factory in Edfu, Aswan, Egypt. Journal of Zhefiang University of Science,6B8, 708-718.
  • Zhang D., Wu K., Li Z., 2004. Tunning effect of porous media's structure on the phase changing behavior of organic phase changing matters. Journal of Tongji Universty,32, 1163-1167.
  • Zhang D., Zhou J., Wu K., Li Z., 2005. Granular phase changing composites for thermal energy storage.Solar Energy,78, 471-480.
  • Zhou X., Xiao H., Feng J., Zhang C., Jiang Y.,2009. Preparation and thermal properties of paraffin/poroussilica ceramic composite. Composites Science and Technology,69, 1246- 1249.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ