Dihidroksibenzen Türevlerinin MWCNT Bağlanması ve Elektrokimyasal NADH Oksidasyonu

3,4 ve 2,5-dihidroksibenzen bileşikleri, Boc (tert-bütiloksikarbonil) koruyucu grubunu taşıyan benzilaminin diazonyum bileşiğinin elektrokimyasal indirgenmesi yoluyla camsı karbon elektrotun (GC) yüzeyinde biriktirilen çok duvarlı karbon nanotüpe (MWCNT) ayrı ayrı ve kovalent olarak bağlanmıştır. Boc grubunun çıkarılmasının ardından, amin uçlu yüzey ile dihidroksibenzen türevlerinin açil grubu arasında bir amit bağı oluşturulmuştur. Dihidroksibenzen ile modifiye edilmiş MWCNT'nin elektrokimyasal özellikleri ve tarama hızının voltamogram üzerindeki etkisi dönüşümlü voltametri (CV) ile aydınlatılmıştır. Dihidroksibenzen türevleri tarafından modifiye edilmiş MWCNT'nin elektron transfer kinetiği de Laviron teorisi kullanılarak incelenmiştir. Modifiye edilmemiş MWCNT ile karşılaştırıldığında anodik pik akımındaki artış ve NADH oksidasyonunun aşırı-potansiyelindeki negatif kayma ile kanıtlandığı gibi, 3,4 ve 2,5-dihidroksibenzen ile modifiye edilmiş MWCNT elektrotlarının NADH oksidasyonuna karşı katalitik aktiviteye sahip olduğu gösterilmiştir.

The Coupling of Dihydroxybenzene Derivatives to MWCNT and Electrochemical NADH Oxidation

3,4 and 2,5- dihydroxybenzene compounds were separately and covalently coupled to the multiwalled carbon nanotube (MWCNT) deposited on the surface of glassy carbon electrode through electrochemical reduction of diazonium compound of benzylamine bearing Boc protecting group (tert-butyloxycarbonyl). Following the removal of the Boc group, an amide bond was formed between the amine-terminated surface and the acyl group of the dihydroxybenzene derivatives. The electrochemical properties of dihydroxybenzene-modified MWCNT and the influence of the sweep rate on the voltammogram were elucidated by cyclic voltammetry (CV). Electron transfer kinetics of modified MWCNT by dihydroxybenzene derivatives was also studied using Laviron’s theory. As evidenced by an improvement in the anodic peak current and a negative shift in the overpotential of NADH oxidation when compared to the bare MWCNT, 3,4 and 2,5- dihydroxybenzene modified MWCNT electrodes were shown to possess catalytic activity toward NADH oxidation.

___

  • Abiman, P., Wildgoose, G., & Compton, R. G., 2008. Investigating the mechanism for the covalent chemical modification of multiwalled carbon nanotubes using aryldiazonium salts. Int. J. Electrochem. Sci., 3(2), 104-117.
  • Baradoke, A., Pastoriza-Santos, I., & González-Romero, E., 2019. Screen-printed GPH electrode modified with Ru nanoplates and PoPD polymer film for NADH sensing: Design and characterization. Electrochim. Acta, 300, 316-323.
  • Barbier, B., Pinson, J., Desarmot, G., & Sanchez, M., 1990. Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon‐Epoxy Composites. J. Electrochem. Soc., 137(6), 1757-1764.
  • Carlson, B. W., & Miller, L. L., 1985. Mechanism of the oxidation of NADH by quinones. Energetics of one-electron and hydride routes. J. Am. Chem. Soc., 107(2), 479-485. Chrétien, J.-M., Ghanem, M. A., Bartlett, P. N., & Kilburn, J. D., 2008. Covalent Tethering of Organic Functionality to the Surface of Glassy Carbon Electrodes by Using Electrochemical and Solid-Phase Synthesis Methodologies. Chem. – A Eur. J., 14(8), 2548-2556.
  • Contreras, G., Barrientos, C., Moscoso, R., Álvarez-Lueje, A., & Squella, J. A., 2020. Electrocatalytic determination of NADH by means of electrodes modified with MWCNTs and nitroaromatic compounds. Microchem. J., 159, 105422.
  • Downard, A. J., 2000. Electrochemically Assisted Covalent Modification of Carbon Electrodes. Electroanal., 12(14), 1085-1096.
  • Ghanem, M. A., Chrétien, J.-M., Pinczewska, A., Kilburn, J. D., & Bartlett, P. N., 2008. Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies J.Mate. Chem., 18(41), 4917-4927.
  • Ghanem, M. A., Kocak, I., Al-Mayouf, A., AlHoshan, M., & Bartlett, P. N., 2012. Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis. Electrochim. Acta, 68, 74-80.
  • Ghanem, M. A., Kocak, I., Al-Mayouf, A., & Bartlett, P. N., 2013. Solid phase modification of carbon nanotubes with anthraquinone and nitrobenzene functional groups. Electrochem. Commun., 34, 258-262.
  • Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
  • Iijima, S., & Ichihashi, T. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605.
  • Jiménez, A., Armada, M. P. G., Losada, J., Villena, C., Alonso, B., & Casado, C. M., 2014. Amperometric biosensors for NADH based on hyperbranched dendritic ferrocene polymers and Pt nanoparticles. Sens. & Act. B: Chem., 190, 111-119.
  • Karousis, N., Tagmatarchis, N., & Tasis, D., 2010. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev., 110(9), 5366-5397. Kharisov, B. I., Kharissova, O. V., Leija Gutierrez, H., & Ortiz Méndez, U., 2009. Recent Advances on the Soluble Carbon Nanotubes. Indus & Eng. Chem. Res., 48(2), 572-590.
  • Koçak, İ., & Alıcı, H., 2020. Experimental and theoretical studies of electrochemical oxidation of nicotinamide adenine dinucleotide at the modified SWCNT and graphene oxide. J. Mol. Model., 26(3), 51.
  • Laviron, E., 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J.Electroanal. Chem. & Inter. Electrochem., 101(1), 19-28.
  • Marcoux, P. R., Hapiot, P., Batail, P., & Pinson, J., 2004. Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes. New J. Chem., 28(2), 302-307.
  • Rębiś, T., Falkowski, M., Milczarek, G., & Goslinski, T., 2020. Electrocatalytic NADH Sensing using Electrodes Modified with 2-[2-(4-Nitrophenoxy)ethoxy]ethylthio-Substituted Porphyrazine/Single-Walled Carbon Nanotube Hybrids. ChemElectroChem, 7(13), 2838-2850.
  • Rębiś, T., Kuznowicz, M., Jędrzak, A., Milczarek, G., & Jesionowski, T., 2021. Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim. Acta, 386, 138384.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Dihidroksibenzen Türevlerinin MWCNT Bağlanması ve Elektrokimyasal NADH Oksidasyonu

İzzet KOÇAK

AcCl veya Ac2O Kullanılarak Bazı Norkantarimid Türevlerinin Moleküler Kararlılık, Sentez Mekanizması ve Oluşumunlarının İncelenmesi: Mekanizma Tabanlı Bir Çalışma

Aytekin KÖSE

Koçpınar/Siirt Kili Kullanarak Atık Sulardan Kristal Violet Boyar Maddesinin Uzaklaştırılmasında Adsorpsiyon Yönteminin İzoterm ve Termodinamik Hesaplamaları

Ali Rıza KUL, Veysel BENEK

Genelleştirilmiş Kuaterniyonlar ve Matris Cebiri

Erhan ATA, Ümit Ziya SAVCI

Kaolin Yüzeyine Dekore Edilmiş Bakır Katkılı Çinko Oksit Nanokompoziti Kullanılarak Reaktif Mavi 21 Tekstil Boyar Maddesinin Adsorpsiyonu, Kinetiği ve Termodinamiği

Eda KELEŞ GÜNER, Agah ÖZDEMİR, Bilge DOĞAN, Bülent ÇAĞLAR

Pınarbaşı Karst Kaynağının (Denizli) Boşalım Hidrodinamiği ve Hidrojeokimyasal Özelliklerinin Değerlendirmesi

Ali GÖKGÖZ, Bilge SEMERCİ AYGÜN

Kapılı Tekrarlayan Hücreler Tabanlı Bulanık Zaman Serileri Tahminleme Modeli

Serdar ARSLAN

Rasyonel Üslü Cebirsel ve Üstel Eşleme Yaklaşımı ile Thomas-Fermi Denklemi için İkinci Derece Doğruluklu Sonlu Farklar Yöntemi

Utku Cem KARABULUT, Turgay KÖROĞLU

23.11.2022 (Mw:5.9) Gölyaka-Düzce depreminde TUSAGA-Aktif İstasyonlarının davranışlarının incelenmesi

Şeyma ŞAFAK YAŞAR, Eda Esma EYÜBAGİL, Ece Bengünaz ÇAKANŞİMŞEK

Demir Esaslı Sert Dolgu Kaplamaların Karakterizasyonu ve Kırılma Tokluğunun İncelenmesi

Melis YURDDAŞKAL