Existence of Solution to Fractional Order Impulsive Partial Hyperbolic Differential Equations with Infinite Delay

Existence of Solution to Fractional Order Impulsive Partial Hyperbolic Differential Equations with Infinite Delay

In this paper, we investigate the existence of solutions to a class of initial value problem for fractional order impulsive partial hyperbolic differential equations (for short FOIPHDEs) with infinite delay. Here we use Mixed Riemann-Liouville fractional derivative to construct the considered FOIPHDEs. The analysis of this paper is based on Burton-Krik fixed point theorem. A new existence result for FOIPHDEs with infinite delay has been obtained. To support the analytic proof, we give an illustrative example.

___

  • [1] S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg (2011).
  • [2] K. Diethelm, The Analysis of Fractional Differential Equations, Springer (2010).
  • [3] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, 84. Springer, Dordrecht (2011).
  • [4] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing (2010).
  • [5] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, UK (2009).
  • [6] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin, Heidelberg (2008).
  • [7] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Eds., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, The Netherlands (2007).
  • [8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands (2006).
  • [9] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
  • [10] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, San Diego, New York, 1999.
  • [11] S. Abbas, M. Benchohra and G.M. N’Gu´er´ekata, Topics in Fractional Differential Equations, Springer, New York (2012).
  • [12] S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62-72.
  • [13] S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597-604.
  • [14] R.P. Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (3) (2010), 973-1033.
  • [15] M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York 2 (2006).
  • [16] M. Benchohra and B. A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential Equations 2009 (2009), No. 10, 11 pp.
  • [17] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325.
  • [18] M. Benchohra and Z. Boutefal, Impulsive Differential Equations of Fractional Order with Infinite Delay, J. Frac. Cal. Appl. 4(2) (2013), 209-223.
  • [19] S. Abbas and M. Benchohra, Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 51, 2 (2012) 5-18.
  • [20] S. Abbas and M. Benchohra, Darboux problem for implicit impulsive partial hyperbolic fractional order differential equations. Electron. J. Differential Equations (2011), No. 150, 14 pp.
  • [21] S. Abbas and M. Benchohra, Upper and Lower Solutions Method for Partial Hyperbolic Differential Equations with Caputo’s Fractional Derivative, LIBERTAS MATHEMATICA, vol XXXI (2011), pp. 103-110.
  • [22] S. Abbas and M. Benchohra, Darboux problem for partial functional differential equations with infinite delay and Caputo’s fractional derivative. Adv. Dyn. Syst. Appl. 5 (2010), no. 1,1-19.
  • [23] J. K. Hale and S. Verduyn Lunel, Introduction to Functional -Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York (1993).
  • [24] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin (1991).
  • [25] V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations, Kluwer Academic Publishers, Dordrecht (1999).
  • [26] V. Lakshmikantham, L. Wen and B. Zhang, Theory of Differential Equations with Unbounded Delay, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht (1994).
  • [27] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer (2011).
  • [28] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York (1996).
  • [29] C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay, Nonlinear Anal.4 (1980), 831-877.
  • [30] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21, (1978),11-41.
  • [31] T. Czlapinski, On the Darboux problem for partial differential-functional equations with infinite delay at derivatives. Nonlinear Anal. 44 (2001), 389-398.
  • [32] T. Czlapinski, Existence of solutions of the Darboux problem for partial differential-functional equations with infinite delay in a Banach space. Comment. Math. Prace Mat. 35 (1995), 111-122.
  • [33] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).
  • [34] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).
  • [35] T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23-31.
  • [36] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York (2003).
  • [37] D. Henry, Geometric theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin-New York (1989).
  • [38] E. Hernandez, A. Anguraj and M. Mallika Arjunan, Existence results for an impulsive second order differential equation with state-dependent delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 287-301.
  • [39] M. Fréchet, Sur quelques points du calculfonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-74.