Cauchy problem with $\psi $--Caputo fractional derivative in Banach spaces

Cauchy problem with $\psi $--Caputo fractional derivative in Banach spaces

This paper is devoted to the existence of solutions for certain classes of nonlinear differential equations involving the $\psi $--Caputo fractional derivative in Banach spaces. Our approach is based on a new fixed point theorem with respect to convex-power condensing operator combined with the technique of measures of noncompactness. Finally, two examples are given to illustrate the obtained results.                                                                                                                                                                                                                                                                                                                      

___

  • x [1] S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Diferential and Integral Equations: Existence and Stability, de Gruyter, Berlin, 2018.
  • [2] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Diferential Equations, Springer, New York, 2012.
  • [3] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Diferential and Integral Equations, Nova Science Publishers, New York, 2015.
  • [4] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional diferential equations in Banach spaces, Fract. Calc. Appl. Anal. 21 (2018) 1027?1045.
  • [5] M.S. Abdo, S.K. Panchal, A.M. Saeed, Fractional boundary value problem with ψ-Caputo fractional derivative, Proc. Indian Acad. Sci. Math. Sci. 129 (2019) 14pp.
  • [6] R. P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional diferential equations, Results Math. 55 (2009) 221-230.
  • [7] R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional diferential equations and inclusions,Acta Appl. Math.109 (2010) 973-1033.
  • [8] A. Aghajani, E. Pourhadi, J. J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional diferential equations in Banach spaces, Fract. Calc. Appl. Anal. 16 (2013) 962-977.
  • [9] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460-481.
  • [10] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional diferential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 (2018) 336-352.
  • [11] R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo frac- tional derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 113 (2019) 1873-1891.
  • [12] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons , New York, 1984.
  • [13] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
  • [14] M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional diferential equations in Banach spaces, Commun. Appl. Anal. 12 (2008) 419-428.
  • [15] D. Bothe, Multivalued perturbations of m-accretive di?erential inclusions, Isr. J. Math. 108 (1998) 109-138.
  • [16] P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal. 14 (2020) 559-584.
  • [17] M. Gohar, C. Li, C. Yin, On Caputo?Hadamard fractional di?erential equations,Int. J. Comput. Math. 97 (2020) 1459-1483.
  • [18] H. Gou, B. Li, Study a class of nonlinear fractional non-autonomous evolution equations with delay, J. Pseudo-Difer. Oper. Appl. 10 (2019) 155-176. [19] H. R. Heinz, On the behavior of measure of noncompactness with respect to di?erentiation and integration of vector-valued functions,Nonlinear Anal. 7 (1983) 1351-1371.
  • [20] H. Hilfer, Application of fractional calculus in physics, New Jersey: World Scientific, 2001.
  • [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional diferential equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam, 2006.
  • [22] K. D. Kucche, A.D. Mali, J. V. C. Sousa, On the nonlinear Ψ-Hilfer fractional diferential equations, Comput. Appl. Math. 38 (2019) 25 pp.
  • [23] K. Li, J. Peng, J. Gao Existence results for semilinear fractional di?erential equations via Kuratowski measure of noncom- pactness, Fract. Calc. Appl. Anal. 15 (2012) 591-610 .
  • [24] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005) 638-649.
  • [25] L. Liu, C. Wu, F. Guo, Existence theorems of global solutions of initial value problems for nonlinear integrodiferential equations of mixed type in Banach spaces and applications, Comput. Math. Appl. 47 (2004) 13-22.
  • [26] M. Ma, Comparison theorems for Caputo-Hadamard fractional diferential equations, Fractals. 27 (2019) 15 pp.
  • [27] K.S. Miller, B. Ross, An Introdsction to Fractional Calculus and Fractional Diferential Equations, Wiley, New YorK, 1993.
  • [28] K. B. Oldham, Fractional di?erential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9-12.
  • [29] I. Podlubny, Fractional Diferential Equations, Academic Press, San Diego, 1999.
  • [30] J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
  • [31] B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative, J. Inequal. Appl. 286 (2018) 11 pp.
  • [32] S. Schwabik, Y. Guoju, Topics in Banach Spaces Integration, Series in Real Analysis 10, World Scientific, Singapore, 2005.
  • [33] H.B. Shi, W.T. Li, H.R. Sun, Existence of mild solutions for abstract mixed type semilinear evolution equations, Turkish J. Math. 35 (2011) 457-472.
  • [34] J. Sun, X. Zhang, The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations, Acta Math. Sinica (Chin. Ser.) 48 (2005) 439-446.
  • [35] V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg & Higher Edscation Press, Beijing, 2010.
  • [36] J.R. Wang, L. Lv, Y. Zhou, Boundary value problems for fractional di?erential equations involoving Caputa derivative in Banach spaces, J. Appl. Math. Comput. 38 (2012) 209-224.
  • [37] E. Zeidler, Nonlinear Functional Analysis and its Applications, part II/B: Nonlinear Monotone Operators, New York: Springer Verlag; 1989.
Advances in the Theory of Nonlinear Analysis and its Application-Cover
  • Başlangıç: 2017
  • Yayıncı: Erdal KARAPINAR