Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)'de Pirimicarb Seleksiyonu ile Elde Edilen Direnç, Asetilkolinesteraz (AChE) Enzim Aktiviteleri ve Gen Bölgesinin Kısmi Dizilimi

Tarım alanlarında zararlı tetranychid türlerin mücadelesinde öncelikli olarak kimyasal mücadele kullanılmaktadır. Bu zararlılar ile etkin bir şekilde beslenen avcı akar popülasyonlarıda pestisitlerden etkilenmektedir. Bu çalışmada, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) üzerinde laboratuar koşullarında pirimicarb seleksiyon baskısı sonucu direnç, asetilkolinesteraz (AChE) enzimi ve mutasyonları arasındaki ilişkilerin belirlenmesi amaçlanmıştır. Çalışma, yaprak disk metoduyla ilaçlama kulesi kullanılarak yapılmıştır. Yedi seleksiyon sonucunda avcı akarda belirlenen pirimicarb direnci 45.5 kata kadar artmıştır. IBP ve TPP sinerjistlerinin pirimicarb üzerinde herhangi bir etkisi belirlenememiştir. Başlangıç ve pirimicarb dirençli P. persimilis popülasyonlarında bakılan hedef bölge mutasyonları (F331W ve G119S) belirlenememiştir, ancak ileriki çalışmalarda farklı hedef bölge mutasyonlarının da incelenmesinin faydalı olacağı düşünülmektedir. Çalışma, P. persimilis'de pirimicarb direnci ve AChE nokta mutasyonları üzerinde yapılan ilk araştırma olması nedeniyle önem taşımaktadır.

Resistance Obtained by Pirimicarb Selection, Acetylcholinesterase (AChE) Enzyme Activities and Partial Sequence of the Gene Region in Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)

Chemical control is primarily used in the management of tetranychid species agricultural areas.Predatory mite populations that feed on these pests are also affected by the pesticides. In this study, it was aimed to determine the relationships between resistance, acetylcholinesterase (AChE) enzyme and mutations as a result of pirimicarb selection pressure on Phytoseiulus persimilisAthias-Henriot (Acari: Phytoseiidae) under laboratory conditions. The study was carried out using the spray tower with the leaf disc method. As a result of seven selections, pirimicarb resistance increased up to 45.5-fold. No effect of IBP and TPP synergists on pirimicarb weredetermined. The target site mutations (F331W and G119S) examined in the initial and pirimicarb resistant P. persimilis populations were also not determined, but it is thought that it would be useful to examine different target site mutations in future studies. The study, is the first to investigate pirimicarb resistance and AChE point mutations in P. persimilis.

___

  • Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F, WalshDB(2021)Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. Journal of Pest Science, 94(3): 639-663.
  • Ahmad S, Pozzebon A, Duso C (2013) Augmentative releases of the predatory mite Kampimodromus aberrans in organic and conventional apple orchards. Crop Protection, 52: 47-56.
  • Albayrak T, Yorulmaz S, İnak E, Toprak U, Van Leeuwen T(2022) Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pesticide Biochemistry and Physiology, 180, 104984.
  • Anazawa Y, Tomita T, Aiki Y, Kozaki T, Kono Y (2003) Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect biochemistry and molecular biology, 33(5): 509-514.
  • Anber H,Oppenoorth F (1989) A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman). Pesticide Biochemistry and Physiology, 33(3): 283-297.
  • Anber H, Overmeer W. (1988) Resistance to organophosphates and carbamates in the predacious mite Amblyseius potentillae (Garman) due to insensitive acetylcholinesterase. Pesticide Biochemistry and Physiology, 31(1): 91-98.
  • Ay R,Yorulmaz S (2010) Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. Journal of Pest Science, 83(2): 85-93.
  • Barbar Z, Tixier MS,Kreiter S (2007) Assessment of pesticide susceptibility for Typhlodromus exhilaratus and Typhlodromus phialatus strains (Acari: Phytoseiidae) from vineyards in the south of France. Experimental and Applied Acarology, 42(2): 95-105.
  • Benavent‐Albarracín L, Alonso M, Catalán J, Urbaneja A, Davies TGE, Williamson MS, González‐Cabrera J (2020) Mutations in the voltage‐gated sodium channel gene associated with deltamethrin resistance in commercially sourced Phytoseiulus persimilis. Insect molecular biology, 29(4): 373-380.
  • Bonafos R, Vigues V, Serrano E, Auger P (2008) Resistance monitoring to deltamethrin and chlorpyriphos-ethyl in 13 populations of Typhlodromus pyri Scheuten (Acari: Phytoseiidae) from vineyards in the southwest of France. Crop Protection, 27(3-5): 855-858.
  • Bostanian NJ, Akalach M(2006)The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari: Phytoseiidae), Amblyseius fallacis (Acari: Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera: Anthocoridae). Pest Management Science: formerly Pesticide Science, 62(4): 334-339.
  • Bradford MM(1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
  • Cassanelli S, Ahmad S, Duso C, Tirello P, Pozzebon A (2015) A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance. Biological Control, 90: 75-82.
  • Cock MJ, van Lenteren JC, Brodeur J, Barratt BI, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG,Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl, 55(2): 199-218.
  • Cong L, Chen F, Yu S, Ding L, Yang J, Luo R, Tian H, Li H, Liu H,Ran C (2016) Transcriptome and difference analysis of fenpropathrin resistant predatory mite, Neoseiulus barkeri (Hughes). International Journal of Molecular Sciences, 17(6): 704.
  • Cross J,Berrie A (1994) Effects of repeated foliar sprays of insecticides or gungicides on organophosphate-resistant strains of the orchard predatory mite Typhlodromus pyri on apple. Crop Protection, 13(1): 39-44.
  • Desneux N, Decourtye A,Delpuech JM(2007) The sublethal effects of pesticides on beneficial arthropods. Annual review of entomology, 52(1): 81-106.
  • Ditillo J, Kennedy G, Walgenbach J (2016) Effects of insecticides and fungicides commonly used in tomato production on Phytoseiulus persimilis (Acari: Phtyoseiidae). Journal of economic entomology, tow234.
  • Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, Nauen R,VontasJ (2016) Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proceedings of the National Academy of Sciences, 113(51): 14692-14697.
  • Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M,Simoni S (2008) Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biological Control, 47(1): 16-21.
  • Fitzgerald J, Solomon M, Polesny F (1999) The predatory mite Typhlodromus pyri; biological characteristics and resistance to insecticides in different mite strains. IOBC WPRS BULLETIN, 22(7): 161-168.
  • Ghazy NA, Osakabe M, Negm MW, Schausberger P, GotohT, Amano H (2016) Phytoseiid mites under environmental stress. Biological Control, 96: 120-134.
  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Thi Ngoc PC,Ortego F (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479(7374): 487-492.
  • Ilias A, Vontas J,Tsagkarakou A (2014) Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect biochemistry and molecular biology, 48: 17-28.
  • Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, Tirry L, Vontas J, Tsagkarakou A (2010) Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Management Science: formerly Pesticide Science, 66(2): 220-228.
  • Kim YJ, Lee SH, LeeSW,AhnYJ (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross‐resistance and biochemical resistance mechanisms. Pest Management Science: formerly Pesticide Science, 60(10): 1001-1006.
  • Kwon D, Clark J,Lee S(2010) Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two‐spotted spider mite. Insect molecular biology, 19(2): 195-204.
  • Kwon DH, ImJS, Ahn JJ, Lee JH, Clark JM, Lee SH (2010) Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pesticide Biochemistry and Physiology, 96(1): 36-42.
  • Lee SH, Kim YH, KwonDH, ChaDJ,KimJH(2015) Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance. Pesticide Biochemistry and Physiology, 120: 118-124.
  • Leeuwen TV, Vontas J, Tsagkarakou A,Tirry L (2009) Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In Biorational control of arthropod pests (pp. 347-393). Springer.
  • Migeon A, TixierMS, Navajas M, Litskas VD,Stavrinides MC (2019) A predator-prey system: Phytoseiulus persimilis (Acari: Phytoseiidae) and Tetranychus urticae (Acari: Tetranychidae): worldwide occurrence datasets. Acarologia, 59(3): 301-307.
  • Oh SH, KozakiT, Mizuno H, TomitaT,KonoY (2006) Expression of Ace-paralogous acetylcholinesterase of Culex tritaeniorhynchus with an amino acid substitution conferring insecticide insensitivity in baculovirus-insect cell system. Pesticide Biochemistry and Physiology, 85(1): 46-51.
  • Pogoda M, Pree D,Marshall D(2001) Effects of encapsulation on the toxicity of insecticides to the Oriental fruit moth (Lepidoptera: Tortricidae) and the predator Typhlodromus pyri (Acari: Phytoseiidae). The Canadian Entomologist, 133(6): 819-826.
  • Pozzebon A, Ahmad S, Tirello P, Lorenzon M,Duso C(2014) Does pollen availability mitigate the impact of pesticides on generalist predatory mites? BioControl, 59(5): 585-596.
  • Smissaert H (1964) Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science, 143(3602): 129-131.
  • Van Leeuwen T,Dermauw W (2016) The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual review of entomology, 61: 475-498.
  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W,Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect biochemistry and molecular biology, 40(8): 563-572.
  • Van Lenteren J, WoetsJ (1988) Biological and integrated pest-control in greenhouses. Annual review of Entomology, 33(1): 239-269.
  • van Lenteren JC, BolckmansK, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 63(1): 39-59.
  • Van Pottelberge S, Khajehali J, Van Leeuwen T,Tirry L (2009) Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 47(4): 301-309.
  • Wu K,Hoy MA (2016) The glutathione-S-transferase, cytochrome P450 and carboxyl/cholinesterase gene superfamilies in predatory mite Metaseiulus occidentalis. PloS one, 11(7): e0160009.
  • Xu D, HeY, ZhangY, XieW, WuQ,WangS (2018) Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pesticide Biochemistry and Physiology, 150: 89-96.
Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1304-7787
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2004
  • Yayıncı: Adnan Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması

Handenur UZUN, Filiz YILDIZ-AKGÜL, Serdal ÖĞÜT

Using Ethanol Degradation as Accelerated Chemical Seed Ageing Indicator For Different cultivars of Soybean

Feni SHINTARIKA, Achmad Yozar PERKASA, Siti Rahmatika FADHILLAH

Sera Beyazsineği [Trialeurodes vaporariorum (Westwood) Aleyrodidae, Hemiptera] nin Malatya İli Brokoli Seralarındaki Populasyon Dalgalanmaları

Fulya KAYA APAK

Çiğ Soya ve Tam Yağlı Soyanın Besin Madde Değerlerinin ve Isıl İşlem Faktörlerinin Kimyasal ve Spektrofotometrik Yöntemlere göre Değerlendirilmesi

Şevval Kahramanoğlu TÜMER, Mürsel ÖZDOĞAN

Pınarbaşı Uzunyayla Bölgesi Çerkes Peynirlerinin Bazı Fizikokimyasal ve Duyusal Özellikleri Üzerine Bir Araştırma

Oktay YERLİKAYA, Cesur MEHENKTAŞ, Ecem AKAN, Prof. Dr. Harun Raşit UYSAL

Pamukta Kromatin İmmünopresipitasyon Yönteminde Kırpılmış DNA İzolasyon Verimini Arttırmak için Lineer Poliakrilamid (LPA) Matriksinin Uygulanması

Murat Kemal AVCI, Erdem TEZCAN, Safiye AVCI, Haluk CAMCI

Denizli Kekik (Origanum onites) Balının Bazı Fiziko-Kimyasal Özellikleri

Aytül UÇAK KOÇ, Yusuf ATAKAN, Hüseyin KÜÇÜKER, Hüdai KÜÇÜKER

Giresun Yöresine Ait Bazı Pekmezlerde ICP-MS ve IC Sistemi ile Mineral Madde Tayini

Berna ÖZTÜRK, Zuhal YOLCU, Elif APAYDIN, Murat YOLCU

Liriomyza sativae Blanchard, 1938 (Diptera: Agromyzidae)’nin DNA Barkodlaması

Cem DAYAN, Eyüp Mennan YILDIRIM

Pamukta (Gossypium hirsutum L.) Lif Kalitesi Üzerine Çevrenin Etkisi

Mustafa Ali KAYNAK, Mustafa KURT