PANEL RADYATÖRLERE AKIŞKAN OLARAK PROPİLEN GLİKOL EKLENMESİNİN ISI TRANSFER PERFORMANSI VE ISIL DAĞILIMA OLAN ETKİSİNİN SAYISAL ANALİZİ

Panel radyatörler günümüzde çoğunlukla su akışkanıyla birlikte kullanılmaktadır. Bu çalışmada; radyatör içeriğine suya ilave olarak, donma noktası düşüklüğü ve zehirli olmamasından dolayı belli oranda propilen glikol eklenmesinin ısı transferi ve ısıl dağılım performansına etkileri incelenmiştir. İlk senaryoda 1x0.6 m. boyularında olan panel radyatöre %100 su eklenerek hücre sayısından bağımsız olarak sayısal analizi gerçekleştirilmiştir. İkinci senaryoda aynı parametreler altında, iç akışkan %90 su ve %10 propilen glikol olacak şekilde sayısal analizler gerçekleştirilmiştir. Yapılan çalışma sonucunda, karışımlı olan panel radyatörde akışkan hızının saf su içeren senaryoya göre %15 daha hızlı ve ısıl dağılımın daha homojen olduğu anlaşılmıştır. Fakat karışımlı senaryoda basınç düşüşünün %43 artış gösterirken ısı transfer performansının ise %12 daha düşük olduğu anlaşılmıştır. Bu sonuçlara rağmen, karışımlı senaryonun ısıl dağılımın homojen olması sonucunda kullanım mahallerinde daha konforlu ısınma özelliği sunacağı ve düşük donma sıcaklığı sayesinde daha kullanışlı olduğu düşünülmektedir

NUMERICAL ANALYSIS OF HEAT TRANSFER PERFORMANCE AND THERMAL DISTRIBUTION AFFECTION OF PANEL RADIATORS TO INVOLVING PROPYLENE GLYCOL AS INTERNAL FLUID WITH WATER

Panel radiators are commonly used as heating elements with water as fluid. In this study, the different fluid is added to installation as mixed with water. Propylene glycol which has lower freezing point value and non-toxic impression. Numerical analysises are completed by CFD method which has independence of grids to provide reasonable results. Firstly, 1x0.6 m. panel radiator which uses the 100% water as internal fluid has been analysed by numerically and then, the fluid has been changed as 10% propylene glycol and 90% water and numerical analysis has been realized identically. The heating fluid velocity is increased about 15% for the mixed scenario, and thermal distribution is more homogenous. However, pressure loss value is increased about 43% for the mixed fluid scenario. Eventhough, the heat transfer performance is found less about 12% than pure water. The distribution of the heat provides better thermal comfort and lower freezing point.

___

  • [1] Altuntaş, N., ‘’ Guneş Enerjisi Tesisatlarında Antifriz Olarak Etilen ve Propilen Glikol Kullanımının İncelenmesi’’ Tesisat Mühendisliği Dergisi, 86 (2005): p.31-38.
  • [2] Yiven, J., Zishuai Y., Zhaohui L., Yi, L., Rui, L., ‘’ Simulation Study of Impacts of Radiator Selection on Indoor Thermal Environment and Energy Consumption’’ 8th International Cold Climate HVAC 2015 Conference, 146 (2016): p.466-472.
  • [3] Embaye, M., Al-Dadah, R., Mahmoud, S., ‘’ The effect of flow pulsation on the heating performance of panel radiators in central heating systems: CFD analysis’’ Advanced Computational Methods and Experiments in Heat Transfer, 83(2014): p.27-36.
  • [4] Yılmaz E., ‘’Exterior surface insulated panel radiator and energy efficiency analysis’’ International Advanced Researches and Engineering Journal, 01(2017): p.18-20
  • [5] Kılıç M., Mutlu M., ‘’ Three-Dimensional Numerical Analysis of Thermal Output of a Steel Panel Radiator’’ Progress in Exergy, Energy, and the Environment, 55 (2014): p.585-593
  • [6] Kibar A., ‘’A Numerical Investigation of The Heating of A 3D Mosque Model Using Panel Radiators, Sigma Journal of Engineering and Natural Sciences, 36(2018): p.1-10.
  • [7] Çelik H.S., Uçar M., Erbay L.B., Efficiency Affection Of Involving Finned Turbulators With Eliptical Formed Holes To Pipe Inlet Surfaces Of A Gas Water Heater Heat Exchanger, 14. Ulusal Tesisat Mühendisliği Kongresi p.1149-1167, İzmir
  • [8] Internet: www.engineeringtoolbox.com.
  • [9] E. Aydar, I. Ekmekci, “Thermal Efficiency Estimation of the Panel Type Radiators with CFD Analysis,”J. of Thermal Science and Technology, 32 (2012): p. 63-71.
  • [10] J.A. Myhren, S. Holmberg, “Design considerations with ventilation radiators: Comparisons to traditional two-panel radiators,” Energy and Buildings, 41 (2009), p. 92-100.
  • [11] M. Maivel, M. Konzelmann, J. Kurnitski, “Energy performance of radiators with parallel and serial connected panels,” Energy and Buildings, 86 (2015), p. 745-753.
  • [12] J.D. Posner, C.R. Buchanan, D. Dunn-Rankin, “Measurement and prediction of indoor air flow in a model room,” Energy and Buildings, 35 (2003), p. 515-526.
  • [13] X. Cao, J. Liu, N. Jiang, Q. Chen, “Particle Image Velocimetry measurement of indoor airflow field: A review of the technologies and applications,’’ Energy and Buildings, 69 (2014), p. 367-380.
  • [14] Beck, S.M.B., Grinsted, S.C., Blakey, S.G. and Worden, K., ‘’Novel design for panel radiators.’’ Applied Thermal Engineering, 24 (2004), p. 1291–1300.
  • [15] Khaled, A.R.A., ‘’Heat transfer enhancement due to properly managing the distribution of the heat flux.’’ Energy Conversion and Management, 53 (2012), p.247-258.
  • [16] Chen, Y. and Zhao, J., ‘’Applications of the Strong Heat Transformation by pulse flow in the Shell and tube heat exchanger.’’ HVAC Technologies for Energy Efficiency, 06 (2006): p. 11-105.
  • [17] Dineen, D. and Gallachoir, B.P.O., ‘’Modelling the impacts of building regulations and a property bubble on residential space and water heating.’’ Energy Buildings, 43(2011): p. 166-178.
  • [18] Myhren, J. A. and Holmberg, S., ‘’Flow patterns and thermal comfort in a room with panel, floor and wall heating.’’ Energy and Buildings, 40 (2008), p. 524-536.