İÇ ANADOLU BÖLGESİ KABUK YAPISININ MODELLENMESİ

Bu çalışmada, İç Anadolu'nun kabuk yapısı modellenmiştir ve bölgenin kabuk ve tektonik yapısı araştırılmıştır. Bu nedenle filtrelenmiş uydu gravite verileri modelleme tekniği ile değerlendirilmiş ve düşey birinci türev verileri toplam yatay türev tekniği ile değerlendirilmiştir. Bölgenin yapısal süreksizlikleri temel kaya seviyelerinde araştırılırken, yatay türev haritasının maksimum genliklerinden yararlanılmıştır. Toplam yatay türev haritası ile çalışma alanındaki temel kaya seviyelerinde yeni süreksizlikler bulunmuştur. Kabuksal arayüz topografyalarındaki alçalma ve yükselme kısımları Parker-Oldenburg inversiyon algoritması kullanılarak belirlendi. Bu işlemlerin yapılabilmesi için öncelikle gravite verileri kesme dalgası sayılarına göre filtrelenmiştir. Bulunan yeni çizgiselliklerin yanı sıra, hesaplanan ara yüzey topografyalarının derinlikleri sırasıyla yumuşak - sert sediment için 1,4 - 3,6 km, temel kaya için 3,8 - 7,2 km, Conrad için 15,5 - 22,5 km, Moho için 30,5 - 39,5 km ve LAB için 81,4 - 88,5 km olarak belirlenmiştir.

MODELLING OF CRUST STRUCTURE OF CENTRAL ANATOLIA REGION

In this study, the crustal structure of Central Anatolia was modeled and the crustal and tectonic structure of the region was investigated. For this purpose, the filtered satellite gravity data were evaluated with the Parker-Oldenburg modelling algorithm and the first vertical derivative data were evaluated with the total horizontal derivative technique. While investigating the structural discontinuities of the region at the basement levels, the maximum amplitudes of the horizontal derivative map were used. With the total horizontal derivative map, new discontinuities were found in the basement levels in the study area. The descending and rising parts of the crustal interface topographies were determined using the Parker-Oldenburg modelling algorithm. In order to carry out these operations, first of all, the gravity data was filtered according to the shear wave numbers. Besides the new lineaments found, the depths of the calculated interface topographies are determined as 1.4 - 3.6 km for soft - hard sediment, 3.8 - 7.2 km for basement, 15.5 - 22.5 km for Conrad, 30.5 - 39.5 km for Moho and 81.4 - 88.5 km for LAB, respectively.

___

  • [1] Altınoğlu, F.F., Sarı, M., Aydın, A., Detection of Lineaments in Denizli Basin of Western Anatolia Region Using Bouguer Gravity Data, Pure and Applied Geophysics, 172, 415–425, 2015.
  • [2] Arısoy, M. Ö., Dikmen, Ü., Potensoft: MATLAB-based Software for potential field data processing, modelling and mapping, Computers and Geosciences, 37, 935–942, 2011.
  • [3] Ateş, A., Bilim, F., Büyüksaraç, A., Curie Point Depth Investigation of Central Anatolia, Turkey, Pure and Applied Geophysics, 162, 357–371, 2005.
  • [4] Aydemir, A., Ateş, A., Preliminary evaluation of Central Anatolian basins in Turkey by using the gravity & magnetic data, Journal of Balkan Geophysıcal Socıety, 8, 7–19, 2005.
  • [5] Aydemir, A., Ateş, A., Structural interpretation of the Tuzgölü and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data, Earth Planets Space, 58, 951–961, 2006.
  • [6] Aydemir, A., Tectonic investigation of Central Anatolia, Turkey, using geophysical data, Journal of Applied Geophysics, 68, 321–334, 2009.
  • [7] Bhattacharyya, B.K., Some general properties of potential fields in space and frequency domain: a review, Geoexploration 5 (3), 127–143, 1967.
  • [8] Büyüksaraç, A., Jordanova, D., Ates, A., Karloukovski, V., Interpretation of the gravity and magnetic anomalies of the Cappadocia Region, Central Turkey, Pure and Applied Geophysics 162, 2197–2213, 2005.
  • [9] Büyüksaraç, A., Investigation into the regional wrench tectonics of inner East Anatolia (Turkey) using potential field data, Physics of the Earth and Planetary Interiors 160, 86–95, 2007.
  • [10] Cooper, G.R.J., Cowan, D.R., Enhancing potential field data using filters based on the local phase, Computers and Geosciences, 32 (10), 1585-1591, 2006.
  • [11] Cordell, L., Grauch, V.J.S., Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, (Ed. Hinze, W.J.) The utility of regional gravity and magnetic anomaly maps, Society of Exploration Geophysicists, 181–197, 1985.
  • [12] Coşkun, B., Aksaray and Ecemis Faults–Diapiric Salt Relationships: relevance to the hydrocarbon exploration in the Tuz Gölü (Salt Lake) Basin, Central Anatolia, Turkey, Energy Sources, 26, 1005–1022, 2004.
  • [13] Cemen, I., Göncüoglu, C., Dirik, K., Structural evolution of the Tuzgölü Basin Central Anatolia, Turkey, The Journal of Geology, 107, 693–706, 1999.
  • [14] Derman, A.S., Rojay, B., Guney, H., Yildiz, M., Sereflikochisar-Aksaray Fay zonunun evrimi hakkinda yeni sedimantolojik veriler. Haymana-Tuzgölü-Ulukisla Basenleri Workshop: TAPG, Special Publication, 5, 47–70, 2000.
  • [15] Elmas, A., Kıbrıs Adasındaki Yapısal Süreksizliklerin EGM08 Gravite Verileri Kullanılarak Belirlenmesi, Jeoloji Mühendisliği Dergisi, 42, 17-32, 2018.
  • [16] Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., Açıklamalı 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30. Ankara- Türkiye, 2013.
  • [17] Evjen, H. M., The place of the vertical gradient in gravitational interpretations, Geophysics, 1, 127–136, 1936.
  • [18] Gao, X., Sun, S., Comment on «3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm». Computers and Geosciences, 127, 133—137, 2019.
  • [19] Gomez-Ortiz, D., Agarwal, B.N.P., 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm, Computers and Geosciences, 31, 513–520, 2005.
  • [20] Görür, N., Tuysuz, O., Şengör, A.M.C., Tectonic evolution of the Central Anatolian Basins, International Geology Review, 40, 831–850. 1998.
  • [21] Gunn, P.J., Linear transformations of gravity and magnetic fields, Geophysical Prospecting, 23 (2), 300-312, 1975.
  • [22] Oldenburg, D.W., The inversion and interpretation of gravity anomalies, Geophysics, 39, 526–536, 1974.
  • [23] Oruç, B., Sönmez, T., The rheological structure of the lithosphere in the Eastern Marmara region, Turkey, Journal of Asian Earth Sciences, 139, 183-191, 2017.
  • [24] Oruç, B., Gomez-Ortiz, D., Petit, C., Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolian and surrounding region, Journal of Asian Earth Sciences, 150, 1-13, 2017.
  • [25] Oruç, B., Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey, Pure and Applied Geophysics, 168, 1769-1780, 2011.
  • [26] Parker, R.L., The rapid calculation of potential anomalies, Geophysical Journal International, 31, 447–455, 1973.
  • [27] Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor. J.K., An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly 2008, Vienna, Austria, April 13–18, 2008. http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008. (Ziyaret tarihi: 11 Şubat 2019), 2008.
  • [28] Şengor, A.M.C., Görür, N., Saroglu, F., Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Special Publication, Society of Economic Paleontologists and Minerologists, 37, 227–264, 1985.
  • [29] Şengör, A.M.C., Yılmaz, Y., Tethyan evolution ol Turkey: A plate tectonic approach, Tectonophysics, 75, 181 - 241, 1981.
  • [30] Şeren, A., Çavsak, H., Jacoby, W., Calculation and inversion of two-dimensional gravity in the vicinity of Lake Tuz, Turkey, Journal of Geodynamics, 29, 87-102, 2000.
  • [31] U.S. Geological Survey, Digital Elevation Models GTOPO30, Virginia, 1998. http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10003_1, (Accessed 8 Feb 2021).
  • [32] Vanacore, E.A., Taymaz, T., Saygin, E., Moho structure of the Anatolian Plate from receiver function analysis, Geophysical Journal International, 193, 329–337, 2013.