The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method
The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method
Authors aimed to employ the sine-Gordon expansion method to acquire the new exact solutions of fractional Fitzhugh-Nagumo equation which is a stripped type of the Hodgkin-Huxley model that expresses in extensive way activation and deactivation dynamics of neuron spiking. By using the wave transformations, by the practicality of chain rule and applicability of the conformable fractional derivative, the fractional nonlinear partial differential equation (FNPDE) changes to a nonlinear ordinary differential equation. So the exact solution of the considered equation can be obtained correctly with the aid of efficient and reliable analytical techniques.
___
- [1] Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, New York, 1993.
- [2] Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
- [3] Podlubny, I., Fractional Differential Equations, Academic Press,San Diego, 1999.
- [4] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70, 2014.
- [5] Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66, 2015.
- [6] Cenesiz, Y., Kurt, A., Tasbozan, O., On the New Solutions of the Conformable Time Fractional Generalized Hirota-Satsuma Coupled KdV System, Annals of West University of Timisoara-Mathematics and Computer Science, 55(1), 37-50, 2017.
- [7] Tasbozan, O., Senol, M., Kurt, A., Ozkan, O., New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves, Ocean Engineering, 161, 62-68, 2018.
- [8] Tasbozan, O., Cenesiz, Y., Kurt, A., Baleanu, D., New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method, Open Physics, 15(1), 647-651, 2017.
- [9] Kurt, A., Tasbozan, O., Baleanu, D., New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G′/G expansion method and homotopy analysis methods, Optical and Quantum Electronics, 49(10), 333, 2017.
- [10] Korkmaz, A., Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves in Random and Complex Media, 29(1), 124-137, 2019.
- [11] Rosales, J.J., Godnez, F.A., Banda, V., Valencia, G.H., Analysis of the Drude model in view of the conformable derivative, Optik, 178, 1010-1015, 2019.
- [12] Srivastava, H.M., Gunerhan, H., Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Mathematical Methods in the Applied Sciences, 42(3), 935-941, 2019.
- [13] Sabiu, J., Jibril, A., Gadu, A.M., New exact solution for the (3 +1)conformable space time fractional modified Kortewegde-Vries equations via Sine-Cosine Method, Journal of Taibah University for Science, 13(1), 91-95, 2019.
- [14] Fitzhugh, R., Impulse and physiological states in models of nerve membrane, Biophys. J., 1, 445-466, 1961.
- [15] Nagumo, J.S., Arimoto, S., Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, 1962.
- [16] Aronson, D.G., Weinberger, H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 33-76, 1978.
- [17] Yan, C., A simple transformation for nonlinear waves, Physics Letters A, 224(1), 77, 1996.
- [18] Cenesiz, Y., Kurt, A., New fractional complex transform for conformable fractional partial differential equations, Journal of Applied Mathematics, Statistics and Informatics, 12, 2, 2016.
- [19] Rubinstein, J., Sine-Gordon Equation, Journal of Mathematical Physics, 11(1), 258-266, 1970.