N$_2$ Gazı Atmosferik Basınç Plazma Jetlerinin Optik Özeliklerinin İncelenmesi

Bu çalışmada öncelikle atmosferik basınçta plazma jet (APPJ) üretimine olanak sağlayan sistem tanıtılmıştır. Azot gazı deşarjları atmosferik basınçta 6-18 kV ve 13-20 kHz ayarlı AC güç kaynağı ile jet olarak üretilmiştir. Üretilen atmosferik basınç azot plazma jetin gaz akış hızına göre uzunluğunun değişimi incelenmiş olup, üretilen jet uzunluğu 5 L/dk gaz akış hızı, 18 kV voltaj ve 15 kHz frekans değerinde yaklaşık olarak 2 cm’dir. Atmosferik basınçta üretilen azot plazma jet, optik emisyon spektroskopisi (OES) ile incelenmiş ve gaz akış hızı ile emisyon spektrumlarındaki değişimler belirlenmiştir. Bununla birlikte, atmosferik basınç azot gazı plazma jetin elektron sıcaklığı ve elektron yoğunluğu azot gazının farklı gaz akış hızları için hesaplanmıştır. Anahtar Kelimeler: Azot; Atmosferik basınç plazma; N$_2$ APPJ; Elektron sıcaklığı; Elektron yoğunluğu.

Investigation on Optical Properties of Atmospheric Pressure Plasma Jets of N$_2$ Gas

In this study, firstly, N2 atmospheric pressure plasma jet (APPJ) system was presented. Nitrogen gas discharges are produced as jet using an AC power supply which can be adjusted between 6-18 kV and the frequency value of 13-20 kHz at atmospheric pressure. The change of length of produced atmospheric pressure nitrogen plasma jet, according to gas flow rate has been investigated and the produced jet length was approximately 2 cm for 5 L/min when the applied voltage was 18 kV and the frequency was 15 kHz. Nitrogen plasma jet produced at atmospheric pressure was examined with optical emission spectroscopy (OES) and the correlation between gas flow rate and emission spectra were investigated. Furthermore, electron temperature and electron density of atmospheric pressure nitrogen gas plasma jet were estimated under different flow rates of N2 gas.Keywords: Nitrogen; Atmospheric pressure plasma; N$_2$ APPJ; Electron temperature; Electron density

___

  • Bogaerts, A., Neyts, E., Gijbels, R., Van der Mullen, J., Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658, 2002.
  • Petitpas, G., Rollier, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., Fulcheri, L., A comparative study of non-thermal plasma assisted reforming technologies, International Journal of Hydrogen Energy, 32(14), 2848-2867, 2007.
  • Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., Atmospheric pressure plasmas: a review, Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30, 2006.
  • Treumann, R.A., Kłos, Z., Parrot, M., Physics of electric discharges in atmospheric gases: an informal introduction, Planetary Atmospheric Electricity, Springer New York, 133- 148, 2008
  • Ahmed, K., Allam, T., El-sayed, H., Soliman, H., Ward, S., Saied, E., Design, construction and characterization of ac atmospheric pressure air non-thermal plasma jet, Journal of Fusion Energy, 33(6), 627-633, 2014.
  • Allam, T., Ward, S., El-Sayed, H., Saied, E., Soliman, H., Ahmed, K., Electrical parameters investigation and zero flow rate effect of nitrogen atmospheric nonthermal plasma jet, Energy and Power Engineering, 6(12), 437, 2014.
  • Ricard, A., Oh, S.G., Jang, J., Kim, Y.K., Quantitative evaluation of the densities of active species of N2 in the afterglow of Ar-embedded N2 RF plasma, Current Applied Physics, 15(11), 1453-1462, 2015.
  • Ricard, A., Oh, S.-g., Guerra, V., Line-ratio determination of atomic oxygen and N2(A3Σu +) metastable absolute densities in an RF nitrogen late afterglow, Plasma Sources Science Technology, 22(3), 2013.
  • Guerra, V., Sa, P., Loureiro, J., Role played by the N2(A3Σu +) metastable in stationary N2 and N2-O2 discharges, Journal of Physics D: Applied Physics, 34(12), 1745, 2001.
  • Loureiro, J., Sá, P., Guerra, V., Role of long-lived N2(X1Σg+, v) molecules and N2(A3Σu+) and N2(a'1Σu-) states in the light emissions of an N2 afterglow, Journal of Physics D: Applied Physics, 34(12), 1769, 2001.
  • Hrycak, B., Jasiński, M., Mizeraczyk, J., Spectroscopic characterization of nitrogen plasma generated by waveguide-supplied coaxial-line-based nozzleless microwave source, IOP Publishing, 406(1), 012037, 2012.
  • Rankovic, D., Kuzmanovic, M., Pavlovic, M.S., Stoiljkovic, M., Savovic, J., Properties of argon–nitrogen atmospheric pressure DC arc plasma, Plasma Chemistry and Plasma Processing, 35(6), 1071-1095, 2015.
  • Karam, L., Casetta, M., Chihib, N.E., Bentiss, F., Maschke, U., Jama, C., Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films, Journal of the Taiwan Institute of Chemical Engineers, 64, 299-305, 2016.
  • Mahmoud, K., Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 153-157, 2016.
  • Gholampour, M., Abdollah-Zadeh, A., Shekari, L., Poursalehi, R., From nanoparticles to nanowires of GaN with different hydrogen gas flow rates by PDC-PECVD, Procedia Materials Science, 11, 304-308, 2015.
  • Choi, J.S., Park, J.G., Interface characterization of nitrogen plasma‐treated gate oxide film formed by RTP technology, Surface and Interface Analysis, 46(S1), 303-306, 2014.
  • Shi, D., Xu, W., Miao, C., Ma, C., Ren, C., Lu, W., Zhang, Q., A high-activity nitrogen plasma flow source for deposition of silicon nitride films, Surface and Coatings Technology, 294, 194-200, 2016.
  • Pan, G.-T., Chong, S., Yang, T.C.-K., Yang, Y.-L., Arjun, N., Surface modification of amorphous SiO2 nanoparticles by oxygen-plasma and nitrogen-plasma treatments, Chemical Engineering Communications, 203(12), 1666-1670, 2016.
  • Wang, J.C., Ye, Y.R., Lin, Y.H., Light‐addressable potentiometric sensor with nitrogen‐incorporated ceramic Sm2O3 membrane for chloride ions detection, Journal of the American Ceramic Society, 98(2), 443-447, 2015.
  • Castro-Colin, M., Durrer, W., López, J.A., Ramirez-Homs, E., Surface modification by nitrogen plasma immersion ion implantation on austenitic AISI 304 stainless steel, Journal of Iron and Steel Research International, 23(4), 380-384, 2016.
  • Praveen, T., Shiju, K., Predeep, P., Influence of plasma treatment on Indium Tin Oxide electrodes, Microelectronic Engineering, 131, 8-12, 2015.
  • Bertóti, I., Mohai, M., László, K., Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative Xray photoelectron spectroscopy, Carbon, 84, 185-196, 2015.
  • Pal, D., Neogi, S., De, S., Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma, Thin Solid Films, 597, 171-182, 2015.
  • Khatir, S., Hirose, A., Xiao, C., Characterization of physical and biomedical properties of nitrogenated diamond-like carbon films coated on polytetrafluoroethylene substrates, Diamond and Related Materials, 58, 205-213, 2015.
  • Alers, G., Fleming, R., Wong, Y., Dennis, B., Pinczuk, A., Redinbo, G., Urdahl, R., Ong, E., Hasan, Z., Nitrogen plasma annealing for low temperature Ta2O5 films, Applied physics letters, 72(11), 1308-1310, 1998.
  • https://www.nist.gov/pml/atomic-spectra-database, 06.03.2020.
  • Shah, M., Ahmad, R., Iikhlaq, U., Saleem, S., Characterization of pulsed DC nitrogen plasma using optical emission spectroscopy and Langmuir probe, Journal of Natural Sciences and Mathematics, 53, 1-12, 2013.
  • Marr, G.V., Plasma spectroscopy, Elsevier Publishing Company, 5, 1968.