Deneysel Diyabetin Kas Dokusunda Oluşturduğu Biyokimyasal Değişiklikler Üzerine Acı Badem Yağının Etkisi

Bu çalışma, deneysel diyabet oluşturulan sıçanlarda acı badem yağının kas dokusunda yağ asidi bileşimi, A, D, E ve K vitaminleri, kolesterol ve bazı sterol parametreleri üzerinde etkisinin araştırılması için tasarlandı. Sıçanlar Kontrol (K), Streptozotosin (STZ) ve Streptozotosin+Acı Badem Yağı (STZ+ABY) olmak üzere üç grubu ayrıldı. STZ gruplarına intraperitoneal enjeksiyonla streptozotosin (45mg/kg) verilerek diyabet oluşturuldu. Acı badem yağı grubundaki sıçanlara haftada iki gün 1ml/kg dozunda intraperitoneal enjeksiyonla acı badem yağı ve ayrıca deney boyunca toz haline getirilmiş 2 g acı badem çekirdeği, 500 ml içme suyuna eklenerek verildi. Kontrol grubu ile karşılaştırıldığında, STZ grubunda palmitik (16:0), stearik asit (18:0) ve SFA düzeylerinin anlamlı bir şekilde azaldığı (p<0.001), margarik (17:0) (p<0.05), oleik (18:1), linoleik (18:2), alfa linolenik (18:3), araşidonik (20:4), dokosaheksaenoik asit (22:6), PUFA ve USFA asidi düzeylerinin anlamlı bir şekilde (p<0.001) arttığı, MUFA düzeyinde anlamlı değişikliğin olmadığı bulundu. STZ grubu ile karşılaştırıldığında, STZ+ABY grubunun kas dokusunda palmitik (16:0) (p<0.001), oleik asit (18:1) (p<0.001) ve MUFA (p<0.01) düzeylerinin anlamlı bir şekilde azaldığı, araşidonik (20:4), dokosaheksaenoik asit (22:6) ve PUFA düzeylerinin anlamlı bir şekilde arttığı (p<0.001), margarik (17:0), stearik (18:0), linoleik (18:2), alfa linolenik asit (18:3), SFA ve USFA düzeylerinde istatistiksel açıdan önemli değişikliklerin olmadığı belirlendi. 133 Kontrol grubu ile karşılaştırıldığında, STZ grubunda vitamin K2, vitamin D3, retinol, vitamin K1 ve stigmasterol düzeylerinde anlamlı bir (p<0.001) azalma, δ-tokoferol, vitamin D2, α-tokoferol ve kolesterol düzeylerinde ise anlamlı bir artışın (p<0.001) olduğu saptandı. β- sitosterol düzeyinde görülen değişikliğin istatistiksel açıdan önemli olmadığı belirlendi. STZ grubuna göre, STZ+ABY grubunun kas dokusunda vitamin K2, δ-tokoferol, vitamin D3, retinol, vitamin K1, kolesterol, stigmasterol düzeylerinin anlamlı bir şekilde arttığı (p<0.001), vitamin D2, α-tokoferol, β-sitosterol düzeylerinin anlamlı bir şekilde azaldığı (p<0.001) tespit edildi. Deneysel diyabetin sıçanların kas dokusunda yağ asidi bileşimi ile A, D, E ve K vitaminleri üzerinde oluşturduğu metabolik düzensizlikler üzerinde uygulanan acı badem yağının etkisinin sınırlı kaldığı belirlenmiştir.

The Effect of Bitter Almond Oil on the Biochemical Alterations in Muscle Tissue of Experimental Diabetes

The present study was designed to evaluate the impact of bitter almond oil on fatty acid composition, A, D, E ve K vitamins, cholesterol and some sterols parameters in muscle tissue of experimental diabetes in rats. The rats were divided into three groups: control (C) streptozotocin (STZ), streptozotocin+ bitter almond oil (STZ+BAO) grups. Diabetes induced in rats by a single intraperitoneal injection of streptozotocin (45mg/kg). 1 ml/kg the dose bitter almond oil was intraperitoneally injected twice in a week to the streptozotocin+bitter almond oil (STZ+BAO), and additionally 2 g/500 ml dose of bitter almond seed powder was added to the drinking water of these rats. It was determined that palmitic, stearic acids and SFA levels were significantly decreased (p<0.001), margaric (17:0) (p<0.01), oleic (18:1), linoleic (18:2), α-linolenic (18:3), arachidonic (20:4), docosahexaenoic acids (22:6), PUFA and USFA levels were significantly increased (p<0.001), MUFA level was not changed in the muscle tissue of STZ group when compared to the Control group. It was observed that palmitic (16:0), oleic acid (18:1) and MUFA (p<0.01) levels were significantly decreased (p<0.001), arachidonic (20:4), docosahexaenoic acid (22:6) and PUFA levels were significantly increased (p<0.001), margaric (17:0), stearic (18:0), linoleic (18:2) and α- linolenic acid (18:3) SFA and USFA levels were not changed in the muscle tissue of STZ+BAO group when compared to the STZ group. 134 It was established vitamin K2, , vitamin D3, retinol, , vitamin K1 and stigmasterol levels were significantly decreased (p<0.001), δ-tocopherol, vitamin D2, α-tocopherol and cholesterol levels were significantly increased (p<0.001), β-sitosterol level was not changed in the muscle tissue of STZ group when compared to the Control group. It was detected that vitamin K2, δ-tocopherol, vitamin D3, retinol, vitamin K1, cholesterol, stigmasterol levels were significantly increased (p<0.001), vitamin D2, α-tocopherol, β-sitosterol levels were significantly decreased (p<0.001) in the muscle tissue of STZ+BAO group when compared to the STZ group. It was determined that the applied of bitter almonds oil was limited on the metabolic disorders of fatty acid composition and A, D, E ve K vitamins in the muscle tissue of experimental diabetic rats.

___

  • S. V. Ürer, G. Alper, Türk Klinik Biyokimya Dergisi, 2004, 2 (3), 127-136.
  • Z. Kurçer, D. Karaoğlu, Turk Jem, 2012, 16, 34-40.
  • N. Vardı, M. Iraz, F. Öztürk, M. Gül, M. Uçar, A. Çetin, N. Nalçacı, A. Otlu, Türkiye Klinikleri J Med Sci, 2007, 27, 641-648.
  • N. E. Cameron, M. A. Cotter, Diabetes Res. Clin. Pract., 1997, 45, 137-146.
  • L. C. Stene, G. Joner, Am. J. Clin. Nutr., 2003, 78 (6), 1128-34.
  • M. Seigneur, G. Freyburger, H. Gin, M. Claverie, D. Lardeau, G. Lacape, Diab. Res. Clin. Pract., 1994, 23 (3), 169-77.
  • C. D. Stubbs, A. D. Smith, Biochim. Biophys. Acta, 1984, 779 (1), 89-137.
  • Ö. Beyhan, M. Aktaş, N. Yılmaz, N. Şimşek, R. Gerçekçioğlu, Journal of Medicinal Plants Research, 2011, 5 (19), 4907-4911.
  • S. Keser, E. Demir, Ö. Yilmaz, J Chem Soc Pak, 2014, 36 (3), 534-541.
  • E. Demir, Ö. Yılmaz, Marmara Pharm J., 2014, 18 (1), 13-21.
  • Q. Dong, M. S. Banaich, P. J. O'Brien, Chem Biol Interact, 2010, 185 (2), 101-9.
  • T. Erkan, Türk Ped Arş, 2011, 46, Özel Sayı: 49-53.
  • J. Ateş, S. Velioğlu, Gıda Mühendisliği Dergisi, 2005, 20, 50-54.
  • A. U. Ahmed, A. H. Ferdous, S. K. Saha, S. Nahar, M. A. Awal, F. Parvin, Mymensingh Med J, 2007, 16 (2), 143-8.
  • S. Dewanjee, A. K. Das, R. Sahu, M. Gangopadhyay, Food Chem Toxicol, 2009, 47 (10), 2679-85.
  • R. Jasmine, P. Daisy, International Journal of Biological Chemistry, 2007, 1 (2), 117-121.
  • A. Hara, N. S. Radin, Analytical Biochem., 1978, 90 (1), 420-426.
  • J. Rodríguez-Miranda, B. Hernández-Santos, E. Herman-Lara, C. A. Gómez-Aldapa, H. S. Garcia, C. E. Martínez-Sánchez, CyTA – Journal of Food, 2014, 12 (1), 9-15.
  • M. Anwar, W. G. Shousha, H. A. El-mezayen, R. Awadallah, M. El-Wassef, N. M. Nazif, M. A. El-bana, J App Pharm Sci, 2013, 3 (10), 59-65.
  • W. W. Christie, The Oil Press, Glaskow, 1992, 302.
  • E. Katsanidis, P. B. Addis, Free Radic Biol Med, 1999, 27, 1137-1140.
  • N. Bragagnolo, D. B. Rodriguez-Amaya, J Food Comp Anal, 2003, 16, 147-153.
  • D. B. Duncan, Biometrics, 1957, 13, 359-364.
  • K. H. Shah, J. B. Patel, V. J. Shrma, R. M. Shrma, R. P. Patel, U. M. Chaunhan, Res. J. Pharm., Biol. Chem. Sci., 2011, 2 (2), 429-434.
  • T. Pelikánová, M. Kohout, J. Base, Z. Stefka, J. Kovár, L. Kazdová, J. Válek., Clin Chim Acta, 1991, 203 (2-3), 329-37.
  • P. Murugan, L. Pari, J. Appl. Biomed., 2007, 5, 31-38.
  • L. A. Witters, B. E. Kemp, J Biol Chem, 1992, 267 (5), 2864-7.
  • G. Rosa, M. Manco, N. Vega, A. V. Greco, M. Castagneto, H. Vidal, G. Mingrone., Obes Res., 2003, 11 (11), 1306-12. 144
  • M. Güvenç, Ö. Yılmaz, M. Tuzcu, A. D. Özşahin, Research Journal of Biological Sciences, 2009, 4 (6), 710-715.
  • S. Çelik, G. Baydaş, Ö. Yılmaz, Cell Biochem Funct, 2002, 20 (1), 67-71.
  • O. Yilmaz, Y. Ersan, A. Dilek Ozsahin, A. Ihsan Ozturk, Y. Ozkan, Iran J Basic Med Sci, 2013, 16, 165-72.
  • A. Dobrzyń, P. Dobrzyń, J Physiol Pharmacol, 2006, 57 Suppl 10, 31-42.
  • S. Keser, E. Demir, Ö Yilmaz, J Chem Soc Pak, 2014, 36 (5), 922-930.
  • J. M. Ntambi, J Lipid Res, 1999, 40 (9), 1549-58.
  • J. M. Ntambi, H. Bené, J Mol Neurosci, 2001, 16 (2-3), 273-8.
  • R. J. Deckelbaum, T. S. Worgall, T. Seo, Am J Clin Nutr, 2006, 83 (6 Suppl), 1520-1525.
  • J. Xu, M. T. Nakamura, H. P. Cho, S. D. Clarke, J Biol Chem, 1999, 274 (33), 23577-83.
  • A. Georgiadi, S. Kersten, Adv Nutr, 2012, 3 (2), 127-34.
  • X. Xiao, B. L. Song, Acta Biochim Biophys Sin (Shanghai), 2013, 45 (1), 2-10.
  • H. G. Wahl, C. Kausch, F. Machicao, K. Rett, M. Stumvoll, H. U. Häring, Diabetes, 2002, 51 (4), 1060-5.
  • T. Mašek, N. Filipović, L. F. Hamzić, L. Puljak, K. Starčević, Experimental
  • Gerontology, 2014, 60, 140-146.
  • K. M. Ramkumar, R. S. Vijayakumar, P. Ponmanickam, S. Velayuthaprabhu, G. Archunan, P. Rajaguru, Basic Clin Pharmacol Toxicol, 2008, 103 (6), 538-45.
  • B. Debski, M. A. Gralak, A. Gronowska-Senger, M. Gornicka, Pol J Vet Sci, 2011, 14 (4), 629-34.
  • J. Kucharska, A. Gvozdjakova, M. Stefek, R. Sotnikova, Z. Sumbalova, Bratisl Lek Listy, 2001, 102 (11), 515-9.
  • Y. Ihara, Y. Yamada, S. Toyokuni, K. Miyawaki, N. Ban, T. Adachi, A. Kuroe, T. Iwakura, A. Kubota, H. Hiai, Y. Seino, FEBS Lett., 2000, 473 (1), 24-6.
  • H. Miyazaki, K. Takitani, M. Koh, R. Takaya, A. Yoden, H. Tamai, J Nutr Sci Vitaminol (Tokyo), 2013, 59 (1), 64-8.
  • L. Ulatowski, C. Dreussi, N. Noy, J. Barnholtz-Sloan, E. Klein, D. Manor, Free Radic Biol Med, 2012, 53 (12), 2318-26.
  • A. T. C. Tsin, B. W. Griffin, N. L. Mata, H. S. Yu, G. W. Williams, J. Y. Crider, M. L. Chandler, J Clin Biochem Nutr, 1993, 15, 23-31.
  • J. Lu, W. T. Dixon, A. T. Tsin, T. K. Basu, J Nutr, 2000, 130 (8), 1958-62. 145
  • D. Azzout-Marniche, D. Bécard, C. Guichard, M. Foretz, P. Ferré, F. Foufelle, Biochem J, 2000, 350, 389-93.
  • P. H. Ducluzeau, N. Perretti, M. Laville, F. Andreelli, N. Vega, J. P. Riou, H. Vidal, Diabetes, 2001, 50 (5), 1134-42.
  • N. Dif, V. Euthine, E. Gonnet, M. Laville, H. Vidal, E. Lefai, Biochem J, 2006, 400 (1), 179-88.
  • J. Kim, Y. Park, Nutr Metab (Lond), 2012, 9 (1), 106.