CoPt Nanoparçacıkların Üzerine Kobalt Oksit Tabakası Oluşturmada Farklı Yaklaşımların Karşılaştırılması

Polyol yöntemi ile hazırlanan CoPt nanoparçacıklarının üzerine oluşturulan kobalt oksit oluşumunun argon gazı ve hava ortamında etkilerini çalıştık. Her iki numune için kobalt oksit oluşumu, x-ışını kırınımı (XRD) yöntemi ile araştırıldı ve hava ile hazırlanan numunede kobalt oksit oluşumu gözlendi. Rietveld düzeltme analizleri, tüm numunelerin kimyasal olarak düzenli olmayan bir kübik kristal yapı sergilediğini ortaya çıkarmıştır. Ortalama parçacık boyutu, taramalı elektron mikroskopisi (SEM) ile

Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles

We have studied the effect of preparation methods, under argon gas and in the air environment, on the cobalt oxide formation of CoPt nanoparticles by the polyol process. The formation of cobalt oxide for both samples was investigated by the x-ray diffraction (XRD) method and cobalt oxide peaks are observed in the air prepared sample. Rietveld refinement analyses revealed that all samples exhibit a chemically distorted cubic crystal structure. The average particle size was determined

___

  • Ethirajan, A., Wiedwald, U., Boyen, H.-G., Kern, B., Han, L., Klimmer, A., Weigl, F., Kästle, G., Ziemann, P., Fauth, K., Cai, J., Behm, R.J., Romanyuk, A., Oelhafen, P., Walther, P., Biskupek, J. and Kaiser, U., A Micellar Approach to Magnetic Ultrahigh-Density Data-Storage Media: Extending the Limits of Current Colloidal Methods, Advanced Materials (Weinheim, Germany), 19(3), 406-410, 2007.
  • Plumer, M.L., Van Ek, J. and Weller, D., The physics of ultra-high-density magnetic recording, Springer Science & Business Media, 2012.
  • Weller, D., Moser, A., Folks, L., Best, M.E., Wen, L., Toney, M.F., Schwickert, M., Thiele, J. and Doerner, M.F., High Ku materials approach to 100 Gbits/in2, IEEE Transactions on Magnetics, 36(1), 10-15, 2000.
  • Himpsel, F., Ortega, J., Mankey, G. and Willis, R., Magnetic nanostructures, Advances in physics, 47(4), 511-597, 1998.
  • Jiles, D., Introduction to magnetism and magnetic materials, CRC press, 2015.
  • Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Le Bouar, Y., Braidy, N. and Loiseau, A., Size and shape effects on the order–disorder phase transition in CoPt nanoparticles, Nature Materials, 8, 940, 2009.
  • Barmak, K., Kim, J., Lewis, L.H., Coffey, K.R., Toney, M.F., Kellock, A.J. and Thiele, J.-U., On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films, Journal of Applied Physics, 98(3), 033904, 2005.
  • Chen, Q., Qin, Z., Gan, Q., Xinqi, C., Hai, W., Daming, S., Bixiao, W., Lifeng, X. and Yiwen, T., Designing 3D interconnected continuous nanoporous Co/CoO core–shell nanostructure electrodes for a high-performance pseudocapacitor, Nanotechnology, 28(8), 085401, 2017.
  • Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E.E. and O'Connor, C.J., Gold-coated Iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic fieldinduced self-assembly, Journal of Solid State Chemistry, 159(1), 26-31, 2001.
  • Mori, K., Kondo, Y. and Yamashita, H., Synthesis and characterization of FePd magnetic nanoparticles modified with chiral BINAP ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction, Physical Chemistry Chemical Physics, 11(39), 8949-8954, 2009.
  • Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C. and Dravid, V.P., Interaction of fatty acid monolayers with Cobalt nanoparticles, Nano Letters, 4(2), 383-386, 2004.
  • Chen, M. and Nikles, D.E., Synthesis of spherical FePd and CoPt nanoparticles, Journal of Applied Physics, 91(10), 8477-8479, 2002.
  • Sobal, N.S., Ebels, U., Möhwald, H. and Giersig, M., Synthesis of Core−Shell PtCo Nanocrystals, Journal of Physical Chemistry B, 107(30), 7351-7354, 2003.
  • Gopinath, S., Sivakumar, K., Karthikeyen, B., Ragupathi, C. and Sundaram, R., Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method, Physica E: Low-dimensional Systems and Nanostructures, 81, 66-70, 2016.
  • Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T. and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nature Materials, 10(10), 780-786, 2011.
  • Shatrova, N., Yudin, A., Levina, V., Dzidziguri, E., Kuznetsov, D., Perov, N. and Issi, J.-P., Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction, Materials Research Bulletin, 86, 80-87, 2017.
  • Izu, N., Matsubara, I., Uchida, T., Itoh, T. and Shin, W., Synthesis of spherical cobalt oxide nanoparticles by a polyol method, Journal of the Ceramic Society of Japan, 125(9), 701- 704, 2017.
  • Salavati-Niasari, M., Khansari, A. and Davar, F., Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process, Inorganica Chimica Acta, 362(14), 4937-4942, 2009.
  • Sinkó, K., Szabó, G. and Zrínyi, M., Liquid-phase synthesis of cobalt oxide nanoparticles, Journal of Nanoscience and Nanotechnology, 11(5), 4127-4135, 2011.
  • Sun, X., Jia, Z., Huang, Y., Harrell, J., Nikles, D., Sun, K. and Wang, L., Synthesis and magnetic properties of CoPt nanoparticles, Journal of Applied Physics, 95(11), 6747-6749, 2004.
  • Aksoy Akgul, F., Akgul, G. and Kurban, M., Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process, Philosophical Magazine, 96(30), 3211-3226, 2016.
  • Wang, X., Ge, H., Ye, Q., Si, P. and Chen, H., Weak Ferromagnetism and Exchange Bias in Antiferromagnetic Cobalt Oxide Nanoparticles, Journal of Magnetics, 23(4), 487-490, 2018.
  • Qiu, B., Guo, W., Liang, Z., Xia, W., Gao, S., Wang, Q., Yu, X., Zhao, R. and Zou, R., Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance, RSC advances, 7(22), 13340-13346, 2017.
  • Liu, Y., Yang, Y., Zhang, Y., Wang, Y., Zhang, X., Jiang, Y., Wei, M., Liu, Y., Liu, X. and Yang, J., A facile route to synthesis of CoPt magnetic nanoparticles, Materials Research Bulletin, 48(2), 721-724, 2013.
  • Trung, T.T., Nhung, D.T., Nam, N.H. and Luong, N.H., Synthesis and Magnetic Properties of CoPt Nanoparticles, Journal of Electronic Materials, 45(7), 3621-3623, 2016.
  • San, B.H., Lee, S., Moh, S.H., Park, J.-G., Lee, J.H., Hwang, H.-Y. and Kim, K.K., Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells, Journal of Materials Chemistry B, 1(10), 1453-1460, 2013.
  • Tournus, F., Tamion, A., Blanc, N., Hannour, A., Bardotti, L., Prével, B., Ohresser, P., Bonet, E., Epicier, T. and Dupuis, V., Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature, Physical Review B, 77(14), 144411, 2008.
  • Frommen, C., Malik, S., Würfel, J.U., Rösner, H. and Didschies, C., Synthesis and magnetic properties of CoPt3 nanoparticle assemblies containing copper, Materials Letters, 58(6), 953-958, 2004.
  • Rooney, P.W., Shapiro, A.L., Tran, M.Q. and Hellman, F., Evidence of a SurfaceMediated Magnetically Induced Miscibility Gap in Co-Pt Alloy Thin Films, Physical Review Letters, 75(9), 1843-1846, 1995.
  • Dai, Q. and Tang, J., The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique, Nanoscale, 5(16), 7512-7519, 2013.