Kan kontaminasyonunun farklı kök ucu dolgu materyallerinin dentine bağlanma dayanımına etkisi

Amaç: Bu in vitro çalışmanın amacı, kan kontaminasyonunun farklı kök ucu dolgu materyallerinin dentine bağlanma dayanımına etkisinin değerlendirilmesiydi. Gereç ve Yöntem: Bu çalışmada tek köklü 90 adet maksiler santral diş kullanıldı. Dişlere endodontik tedavi uygulandıktan sonra kök uçları rezeke edildi ve kök ucu kaviteleri hazırlandı. Öncelikle örnekler, kavitelerin kanla kontaminasyonuna göre (+/-) 2 gruba ayrıldı. Daha sonra kök ucu dolgu malzemelerine göre üç alt gruba ayrıldı: MTA Repair HP, RetroMTA, MTA Flow (n=15). Bu malzemeler üreticinin talimatları doğrultusunda kaviteye yerleştirildi. Örnekler 21 gün boyunca 37 °C’de %100 nemli ortamda bekletildi. 1.0±0.1 mm kesitler elde edildikten sonra itme-bağlanma dayanımı testi gerçekleştirildi. Başarısızlık tipini değerlendirmek için her kesit stereomikroskop altında incelendi. Veriler tek yönlü varyans analizi ve bağımsız örneklem t-testi kullanılarak analiz edildi. Bulgular: Bağlanma dayanımı, kan kontaminasyonunun varlığından önemli ölçüde olumsuz yönde etkilendi (p<0.05). En yüksek bağlanma dayanımı MTA Flow (-) grubunda, en düşük bağlanma dayanımı ise MTA Repair HP (+) grubunda gözlendi (p<0.05). Hem kanla kontamine olan grupta hem de kanla kontamine olmayan grupta MTA Repair HP en düşük bağlanma dayanımını gösterirken (p<0.001), MTA Flow ve RetroMTA arasında anlamlı farklılık bulunmadı (p>0.05). Sonuç: Kan kontaminasyonu dentine bağlanma dayanımını azalttı. Materyaller arasında en yüksek bağlanma dayanımını MTA Flow gösterdi.

Effect of blood contamination on bond strength of different root‑end filling materials to dentin

Objective: The aim of this in vitro study was to evaluate the effect of blood contamination on bond strength of different root-end filling materials to dentin. Materials and Method: Ninety single-rooted maxillary central teeth were used. After endodontic treatment was performed, the root-ends were resected and retrograde cavities were prepared. First, the specimens were divided into 2 groups (+/-) according to the blood contamination of the cavities. Then, the specimens were divided into three subgroups (n=15) according to the root-end filling materials: MTA Repair HP, RetroMTA, MTA Flow. These materials were prepared according to the manufacturer's instructions. The specimens were kept at 37 °C in a 100% humid environment for 21 days. After obtaining 1.0±0.1 mm slices, push-out bond strength analysis was performed. Each slice was examined under a stereomicroscope to evaluate the failure mode. The data were analyzed using one‑way analysis of variance and independent sample t-test. Results: The bond strength was negatively affected by blood contamination (p<0.05). The highest bond strength was observed in the MTA Flow (-) group and the lowest was observed in the MTA Repair HP (+) group (p<0.05). No significant difference was found between MTA Flow and RetroMTA (p>0.05), while MTA Repair HP showed the lowest bond strength in both the blood contaminated and the non-blood contaminated groups (p<0.001). Conclusion: Blood contamination reduced the bond strength to dentin. MTA Flow showed the highest bond strength among the materials.

___

  • Abusrewil SM, McLean W, Scott JA. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent J 2018;30:273-82.
  • Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review-Part I: Chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.
  • Jain P, Nanda Z, Deore R, Gandhi A. Effect of acidic environment and intracanal medicament on push-out bond strength of biodentine and mineral trioxide aggregate plus: an in vitro study. Med Pharm Rep 2019;92:277-81.
  • ultradent.com [Internet]. South Jordan, UT: Endo-Eze MTAFlow; c2020 [cited: 2020 Sept 13]. Available from: https://www.ultradent.com/products/categories/endodontics/mta-repair/mta-flow
  • Lee H, Shin Y, Kim SO, Lee HS, Choi HJ, Song JS. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs' teeth. J Endod 2015;41:1317-24.
  • angelusdental.com [Internet]. Brezilya: MTA Repair HP; c2020 [cited: 2020 Aug 14]. Available from: https://www.angelusdental.com/products/details/id/207
  • Tomás‐Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena A, et al. Comparative analysis of the biological effects of the endodontic bioactive cements MTA‐Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017;50:e63-72.
  • Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod 2010;36:871-4.
  • VanderWeele RA, Schwartz SA, Beeson TJ. Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod 2006;32:421-4.
  • Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591-5.
  • Adl A, Sadat Shojaee N, Pourhatami N. Evaluation of the dislodgement resistance of a new pozzolan-based cement (EndoSeal MTA) compared to ProRoot MTA and Biodentine in the presence and absence of blood. Scanning 2019;2019:3863069
  • Bolhari B, Yazdi KA, Sharifi F, Pirmoazen S. Comparative scanning electron microscopic study of the marginal adaptation of four root-end filling materials in presence and absence of blood. J Dent (Tehran) 2015;12:226-34.
  • Song M, Yue W, Kim S, Kim W, Kim Y, Kim JW, et al. The effect of human blood on the setting and surface micro-hardness of calcium silicate cements. Clin Oral Invest 2016;20:1997-2005.
  • Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical–physical properties, bioactivity and biological behavior. Dent Mater 2011;27:e134-57.
  • Soares CJ, Santana FR, Castro CG, Santos-Filho PC, Soares PV, Qian F, et al. Finite element analysis and bond strength of a glass post to intraradicular dentin: comparison between microtensile and push-out tests. Dent Mater 2008;24:1405-11
  • Nagas E, Kucukkaya S, Eymirli A, Uyanık MO, Cehreli ZC. Effect of laser-activated irrigation on the push-out bond strength of ProRoot Mineral Trioxide Aggregate and Biodentine in furcal perforations. Photomed Laser Surg 2017;35:231-5.
  • Türker SA, Uzunoğlu E. Effect of powder‐to‐water ratio on the push‐out bond strength of white mineral trioxide aggregate. Dent Traumatol 2016; 32: 153-5.
  • Vivan RR, Zapata RO, Zeferino MA, Bramante CM, Bernardineli N, Garcia RB, et al. Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:250-6.
  • Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology 2019;107:421-36
  • International Standards Organization. Specification for dental root canal sealing materials. ISO 6876. International Standards Organization, Geneva, Switzerland; 2012.
  • Cavenago BC, Pereira TC, Duarte MAH, Ordinola-Zapata R, Marciano MA, Bramante CM, et al. Influence of powder‐to‐water ratio on radiopacity, setting time, pH, calcium ion release and a micro‐CT volumetric solubility of white mineral trioxide aggregate. Int Endod J 2014;47:120-6.
  • Gandolfi MG, Iacono F, Agee K, Siboni F, Tay F, Pashley DH, et al. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e39-45.
  • Shipper G, Grossman ES, Botha AJ, Cleaton-Jones PE. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root‐end filling material: a low‐vacuum (LV) versus high‐vacuum (HV) SEM study. Int Endod J 2004;37:325-36.
  • Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, et al. Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Invest 2021;25:663-72.
  • Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement–based (MTA-like) system. J Endod 2007;33:295-8.
  • Duarte MA, Minotti PG, Rodrigues CT, Zapata RO, Bramante CM, Tanomaru Filho M, et al. Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J Endod 2012;38:394-7.
  • Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40:462-70.
  • Marciano MA, Duarte MA, Camilleri J. Dental discoloration caused by bismuth oxide in MTA in the presence of sodium hypochlorite. Clin Oral Invest 2015;19:2201-9.
  • Amoroso-Silva PA, Marciano MA, Guimaraes BM, Duarte MAH, Sanson AF, Moraes IGD. Apical adaptation, sealing ability and push-out bond strength of five root-end filling materials. Braz Oral Res 2014;28:1-6.
  • Silva EJNL, Carvalho NK, Guberman MRDCL, Prado M, Senna PM, Souza EM, De-Deus G. Push-out bond strength of fast-setting mineral trioxide aggregate and pozzolan-based cements: ENDOCEM MTA and ENDOCEM Zr. J Endod 2017;43:801-4.
  • Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci 2019;27:e20180429
  • Williamson AE, Dawson DV, Drake DR, Walton RE, Rivera EM. Effect of root canal filling/sealer systems on apical endotoxin penetration: a coronal leakage evaluation. J Endod 2005;31:599-604.
  • Guimaraes BM, Vivan RR, Piazza B, Alcalde MP, Bramante CM, Duarte MAH. Chemical-physical properties and apatite-forming ability of mineral trioxide aggregate flow. J Endod 2017;43:1692-6.
  • Guimarães BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J Appl Oral Sci 2018;26:e2017115
  • Formosa LM, Mallia B, Camilleri J. Push‐out bond strength of MTA with antiwashout gel or resins. Int Endod J 2014;47:454-462.
  • Nekoofar MH, Davies TE, Stone D, Basturk FB, Dummer PMH. Microstructure and chemical analysis of blood‐contaminated mineral trioxide aggregate. Int Endod J 2011;44:1011-8.
  • Nekoofar MH, Oloomi K, Sheykhrezae MS, Tabor R, Stone DF, Dummer PMH. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J 2010;43:849-58.
  • Üstün Y, Topçuoğlu HS, Akpek F, Aslan T. The effect of blood contamination on dislocation resistance of different endodontic reparative materials. J Oral Sci 2015;57:185-90.
  • Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push‐out bond strength of a nano‐modified mineral trioxide aggregate. Dent Traumatol 2013;29:323-7.
  • Akbulut MB, Bozkurt DA, Terlemez A, Akman M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor Dent Endod 2019;44:e5