Farklı mekanik yüzey işlemleri ile tamir edilen akrilik kaide rezininin transvers dayanımı

Amaç: Bu çalışmanın amacı geleneksel ısı ile polimerize olan akrilik rezinin tamirinde, tamir yüzeylerine uygulanan farklı mekanik yüzey işlemlerinin akrilik rezinin transvers dayanımına etkisini araştırmaktır.Gereç ve Yöntem: Özel bir kalıp yardımıyla dikdörtgenler prizması şeklinde 160 adet akrilik rezin örnek hazırlandı ve tamir yüzeylerine farklı işlemler uygulamak üzere 4 farklı gruba ayrıldı; Grup 1 işlem uygulanmayan kontrol grubunu, Grup 2 kumlama uygulanan grubu, Grup 3 plazma uygulanan grubu ve Grup 4 Er:YAG lazer uygulanan grubu temsil etmektedir. Yüzey işlemlerini takiben tamir yüzeyleri taramalı elektron mikroskobu (SEM) ve enerji dağılımı spektroskopi (EDS) kullanılarak incelendi. Daha sonra örnekler otopolimerizan akrilik ile tamir edilerek yine dikdörtgenler prizması şeklinde (65×10×3.3 mm) toplam 80 adet örnek (n=20/grup) elde edildi. Tamir edilen örneklerin transvers dayanımı ısısal döngü uygulandıktan sonra üç nokta bükme testi ile üniversal test cihazı kullanılarak ölçüldü. Sonuçların istatistiksel analizi tek yönlü ANOVA ile yapıldı ve sonrasında Tukey HSD testi kullanılarak gruplara ait ortalamalar karşılaştırıldı. Sonuçlar α=0.05 için anlamlı kabul edildi.Bulgular: Grup 2 (27.06 ± 5.02 MPa) ve Grup 4 (26.06 ± 3.44 MPa), kontrol grubuna (Grup 1; 18.26 ± 5.27 MPa) ve Grup 3’e (11.19 ± 2.73 MPa) göre istatistiksel olarak anlamlı şekilde daha yüksek transvers dayanıklılık değerleri gösterdi (p<0.05), Grup 3 (11.19 ± 2.73 MPa) tüm gruplardan istatistiksel olarak anlamlı şekilde daha düşük transvers dayanıklılık değerleri gösterdi (p<0.05). Sonuç: Geleneksel ısı ile polimerize olan akrilik rezinin otopolimerizan akrilik rezin ile tamirinde, tamir yüzeylerine kumlama veya Er;YAG lazer uygulaması akrilik rezinin transvers dayanımını arttırırken, plazma uygulaması transvers dayanımı azalttı.

Transverse strength of acrylic denture base resin repaired with different mechanical surface treatment methods

Objective: The aim of this study was to investigate the effects of different mechanical surface treatment methods on the transverse strength of a repaired conventional heat-polymerized acrylic resin.Materials and Method: One hundred and sixty rectangular-shaped acrylic resin specimens were prepared using a custom mold, and divided into 4 groups according to different surface treatment methods; Group 1 (control): no treatment, Group 2: air-borne particle abrasion, Group 3: plasma application, and Group 4: Er:YAG laser application. Following the surface treatments, the repaired surfaces were examined using Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS). Then, the specimens were repaired with autopolymerizing acrylic resin to form a total of 80 (n=20/group) rectangular-shaped (65×10×3.3 mm) test specimens. The repaired specimens were subjected to thermal cycling. Then, the transverse strength was measured by a three-point bending test using a universal testing machine. The data were analyzed by using one-way ANOVA and Tukey HSD tests. The results were considered significant for α=0.05.Results: Group 2 (27.06 ± 5.02 MPa) and Group 4 (26.06 ± 3.44 MPa) revealed significantly greater transverse strength values compared to the control (Group 1; 18.26 ± 5.27 MPa), and Group 3 (11.19 ± 2.73 MPa) (p<0.05), Group 3 revealed significantly lower transverse strength values compared to all other groups (p<0.05).Conclusion: Air-borne particle abrasion or Er:YAG laser application increased the transverse strength of heat-cure acrylic resin repaired with autopolymerizing acrylic resin; however, the plasma treatment decreased the transverse strength.

___

  • Minami H, Suzuki S, Kurashige H, Minesaki Y, Tanaka T. Flexural strengths of denture base resin repaired with autopolymerizing resin and reinforcements after thermocycle stressing. J Prosthodont 2005;14:12-8.
  • Heidari B, Firouz F, Izadi A, Ahmadvand S, Radan P. Flexural strength of cold and heat cure acrylic resins reinforced with different materials. J Dent (Tehran) 2015;12:316-23.
  • Beyli MS, von Fraunhofer JA. An analysis of causes of fracture of acrylic resin denture. J Prosthet Dent 1981;46:238-41.
  • Pereira Rde P, Delfino CS, Butignon LE, Vaz MA, Arioli-Filho JN. Influence of surface treatments on the flexural strength of denture base repair. Gerodontology 2012;29:234-8.
  • Polyzois GL, Tarantili PA, Frangou MJ, Andreopoulos AG. Fracture force, deflection at fracture, and toughness of repaired denture resin subjected to microwave polymerization or reinforced with wire or glass fiber. J Prosthet Dent 2001;86:613-9.
  • Sarac YS, Sarac D, Kulunk T, Kulunk S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. J Prosthet Dent 2005;94:259-66.
  • Turgut S, Korkmaz FM, Bağış B, Ayaz EA, Ateş SM. Çeşitli yüzey işlemlerinin akrilik kaide rezinin transvers dayanımı üzerine etkisi. Turkiye Klinikleri J Dental Sci 2014;20:93-9.
  • Thunyakitpisal N, Thunyakitpisal P, Wiwatwarapan C. The effect of chemical surface treatments on the flexural strength of repaired acrylic denture base resin. J Prosthodont 2011;20:195-9.
  • Elhadiry SS, Yunus N, Ariffin YT. Effect of cavity preparation on the flexural strengths of acrylic resin repairs. J Appl Oral Sci 2010;18:546-50.
  • Nishigawa G, Maruo Y, Oka M, Okamoto M, Minagi S, Irie M, et al. Effect of plasma treatment on adhesion of self-curing repair resin to acrylic denture base. Dent Mater J 2004;23:545-9.
  • Nishigawa G, Maruo Y, Oka M, Oki K, Minagi S, Okamoto M. Plasma treatment increased shear bond strength between heat cured acrylic resin and self-curing acrylic resin. J Oral Rehabil 2003;30:1081-4.
  • Akin H, Tugut F, Mutaf B, Güney U, Özdemir AK. Effect of sandblasting with different size of aluminum oxide particles on tensile bond strength of resilient liner to denture base. Cumhuriyet Dent J 2011;14:5-11.
  • Jacobsen NL, Mitchell DL, Johnson DL, Holt RA. Lased and sandblasted denture base surface preparations affecting resilient liner bonding. J Prosthet Dent 1997;78:153-8.
  • Akin H, Tugut F, Guney U, Akar T. Shear bond strength of denture teeth to two chemically different denture base resins after various surface treatments. J Prosthodont 2014;23:152-6.
  • Tugut F, Akin H, Mutaf B, Akin GE, Ozdemir AK. Strength of the bond between a silicone lining material and denture resin after Er:YAG laser treatments with different pulse durations and levels of energy. Lasers Med Sci 2012;27:281-5.
  • Liston EM. Plasma treatment for improved bonding: A review. The Journal of Adhesion 1989;30:199–218.
  • Dorfman MR. Handbook of Environmental Degradation of Materials. 19-Thermal Spray Coatings, William Andrew Publishing, 2012. p. 569–596.
  • ISO 20795-1:2013. Dentistry - Base Polymers - Part 1: Denture Base Polymers, International Standards Organization (ISO), Geneva, Switzerland, 2013.
  • Seo RS, Neppelenbroek KH, Filho JN. Factors affecting the strength of denture repairs. J Prosthodont 2007;16:302-10.
  • Ellakwa AE, El-Sheikh AM. Effect of chemical disinfectants and repair materials on the transverse strength of repaired heat-polymerized acrylic resin. J Prosthodont 2006;15:300-5.
  • Siddesh CS, Aras MA. In vitro evaluation of transverse strength of repaired heat cured denture base resins with and without surface chemical treatment. J Indian Prosthodont Soc 2008;8:87-93.
  • Faot F, Silva WJ, Rosa RST, Del Bel Cury AA, Garcia RC. Strength of denture base resins repaired with auto- and visible light-polymerized materials. J Prosthodont 2009;18:496-502.
  • Agarwal M, Nayak A, Hallikerimath RB. A study to evaluate the transverse strength of repaired acrylic denture resins with conventional heat-cured, autopolymerizing and microwave-cured resins: an in vitro study. J Indian Prosthodont Soc 2008;8:36-41.
  • Rached RN, Powers JM, Del Bel Cury AA. Repair strength of autopolymerizing, microwave and conventional heat–polymerized acrylic resins. J Prosthet Dent 2004;92:79-82.
  • Sarac D, Sarac YS, Külünk Ş, Külünk T, Ural Ç. The effect of methylene chloride application for different time periods on the bond strength of autopolymerizing acrylic resin to denture base resin. GÜ Diş Hek Fak Derg 2005;22:157-61.
  • Vojdani M, Rezaei S, Zareeian L. Effect of chemical surface treatments and repair material on transverse strength of repaired acrylic denture resin. Indian J Dent Res 2008;19:2-5.
  • Minami H, Suzuki S, Minesaki Y, Kurashige H, Tanaka T. In vitro evaluation of the influence of repairing condition of denture base resin on the bonding of autopolymerizing resins. J Prosthet Dent 2004;91:164-70.
  • Storer R. Resilient denture base materials. Part 1, Introduction and laboratory evaluation. Br Dent J 1962;113:195-203.
  • Usümez A, Inan O, Aykent F. Bond strength of a silicone lining material to alumina-abraded and lased denture resin. J Biomed Mater Res Part B: Appl Biomater 2004;71:196-200.
  • Amin WM, Fletcher AM, Ritchie GM. The nature of the interface between polymethyl methacrylate denture base materials and soft lining materials. J Dent 1981;9:336-46.
  • Lukac M, Primc NM, Pirnat S. Quantum square pulse Er:YAG lasers for fast and precise hard dental tissue preparation. Journal of the Laser and Health Academy 2012;1:14-21.
  • Liebermann A, Keul C, Bähr N, Edelhoff D, Eichberger M, Roos M, et al. Impact of plasma treatment of PMMA-based CAD/CAM blanks on surface properties as well as on adhesion to self-adhesive resin composite cements. Dent Mater 2013;29:935-44.
  • Yeşildal R, Günay YZ. Plazma sprey yöntemi ile kaplama ve sprey karakteristiklerinin incelenmesi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2007;9:59-76.
  • Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99.