In silico Activity and Target Prediction Analyses of Three Triazolothiadiazine Derivatives

In silico Activity and Target Prediction Analyses of Three Triazolothiadiazine Derivatives

Objective: Polypharmacology, interaction of one drug with multiple targets, emerged as an effective approach in drug discovery and development. Bioinformatics and cheminformatics methods are essential tools for determination of polypharmacological profiles of newly synthesized or known compounds and drugs. Previously, three novel triazolothiadiazine derivatives; 1h, 3c and 3h, have been shown to induce apoptosis and cause cell cycle arrest on liver cancer cells. The aim of this study is to find possible action mechanisms and potential targets for these three triazolothiadiazine derivatives, and to investigate their potential as new therapeutic agents by using computational methods. Materials and Methods: PASS software was used to identify biological activities and Swiss Target Prediction and BindingDB databases to predict potential targets for 1h, 3c and 3h. PDE4A, ALR and DUSP1 proteins were selected for molecular docking analysis following the protein modeling of the three proteins. Results: Activity prediction results show that 1h, 3c and 3h might have phosphatase and signal transduction pathway inhibitor, hepatocyte growth factor antagonist, anti-inflammatory and antifungal activities. These derivatives are predicted as inhibitors of several phosphodiesterases by activity and target prediction tools. Conclusion: Based on prediction and molecular docking results, it is proposed that these compounds may have therapeutic properties through new predicted targets.

___

  • [1] Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. Jan 2013;6(1):41-7. doi:10.1586/ecp.12.74
  • [2] Ferrero E, Dunham I, Sanseau P. In silico prediction of novel therapeutic targets using gene-disease association data. Journal of Translational Medicine. Aug 29 2017;15doi:ARTN 182. 10.1186/s12967-017-1285-6
  • [3] Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics. Jun 15 2010;26(12):i246-54. doi:10.1093/ bioinformatics/btq176
  • [4] Morrow JK, Tian L, Zhang S. Molecular networks in drug discovery. Crit Rev Biomed Eng. 2010;38(2):143-56.
  • [5] Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novere N. The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J. 2016;14:363-370. doi:10.1016/j. csbj.2016.09.002
  • [6] Liu X, Xu Y, Li S, et al. In Silico target fishing: addressing a “Big Data” problem by ligand-based similarity rankings with data fusion. J Cheminform. 2014;6:33. doi:10.1186/1758- 2946-6-33
  • [7] Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. May 1 2001;43(2):217-26.
  • [8] Grosdidier A, Zoete V, Michielin O. SwissDock, a proteinsmall molecule docking web service based on EADock DSS. Nucleic Acids Res. Jul 2011;39(Web Server issue):W270-7. doi:10.1093/nar/gkr366
  • [9] Aytac PS, Durmaz I, Houston DR, Cetin-Atalay R, Tozkoparan B. Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins. Bioorg Med Chem. Feb 15 2016;24(4):858- 72. doi:10.1016/j.bmc.2016.01.013
  • [10] Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. Jul 2014;42(Web Server issue):W32-8. doi:10.1093/nar/ gku293
  • [11] Daina A, Michielin, O., Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;(7:42717 )
  • [12] Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds. Jun 2014;50(3):444-457. doi:10.1007/s10593-014-1496-1
  • [13] Goel RK, Singh D, Lagunin A, Poroikov V. PASSassisted exploration of new therapeutic potential of natural products. Medicinal Chemistry Research. Dec 2011;20(9):1509-1514. doi:10.1007/s00044-010-9398-y
  • [14] Marwaha A, Goel RK, Mahajan MP. PASS-predicted design, synthesis and biological evaluation of cyclic nitrones as nootropics. Bioorganic & Medicinal Chemistry Letters. Sep 15 2007;17(18):5251-5255. doi:10.1016/j.bmcl.2007.06.071
  • [15] Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. Jan 4 2016;44(D1):D1045-53. doi:10.1093/nar/gkv1072
  • [16] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. Jun 2015;10(6):845-58. doi:10.1038/ nprot.2015.053
  • [17] Grosdidier A, Zoete V, Michielin O. Fast Docking Using the CHARMM Force Field with EADock DSS. J Comput Chem. Jul 30 2011;32(10):2149-2159. doi:10.1002/jcc.21797
  • [18] Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera- -a visualization system for exploratory research and analysis. J Comput Chem. Oct 2004;25(13):1605-12. doi:10.1002/jcc.20084
  • [19] Lipinski CA, Lombardo, F.,Dominy, B.W. , Feeney, P. J. . Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2001;(46):3-26.
  • [20] Maeda K, Sugino H, Akazawa H, et al. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonindopamine activity modulator. J Pharmacol Exp Ther. Sep 2014;350(3):589-604. doi:10.1124/jpet.114.213793
  • [21] Seeger TF, Seymour PA, Schmidt AW, et al. Ziprasidone (CP- 88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther. Oct 1995;275(1):101-13.
  • [22] Ibrar A, Zaib S, Jabeen F, Iqbal J, Saeed A. Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin-Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis. Arch Pharm (Weinheim). Jul 2016;349(7):553-65. doi:10.1002/ardp.201500392
  • [23] Thirunavukkarasu C, Wang LF, Harvey SA, et al. Augmenter of liver regeneration: an important intracellular survival factor for hepatocytes. J Hepatol. Apr 2008;48(4):578-88. doi:10.1016/j.jhep.2007.12.010
  • [24] Polimeno L, Pesetti B, De Santis F, et al. Decreased expression of the augmenter of liver regeneration results in increased apoptosis and oxidative damage in humanderived glioma cells. Cell Death Dis. Apr 5 2012;3:e289. doi:10.1038/cddis.2012.25
  • [25] Xia N, Yan R, Liu Q, Sun H, Guo H, Zhang L. [Over-expression of augmenter of liver regeneration promotes proliferation and suppresses hydrogen peroxide-induced apoptosis in LO2 cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. Aug 2015;31(8):1017-21.
  • [26] Vodovotz Y, Prelich J, Lagoa C, et al. Augmenter of Liver Regeneration (ALR) Is a Novel Biomarker of Hepatocellular Stress/Inflammation: In Vitro, In Vivo and In Silico Studies. Mol Med. Nov 2012;18(11):1421-1429. doi:10.2119/ molmed.2012.00183
  • [27] Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med. Sep 2015;19(9):2075-83. doi:10.1111/ jcmm.12618
  • [28] Liu W, Yu B, Xu G, et al. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). J Med Chem. Sep 26 2013;56(18):7212-21. doi:10.1021/jm400474r
  • [29] Duan YQ, Ma Y, Wang XJ, et al. Design potential selective inhibitors for treating cancer by targeting the Src homology 2 (SH2) domain-containing phosphatase 2 (Shp2) with core hopping approach. Protein Pept Lett. Jun 2014;21(6):556-63.
  • [30] Yu B, Liu W, Yu WM, et al. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Mol Cancer Ther. Sep 2013;12(9):1738-48. doi:10.1158/1535-7163.MCT-13-0049-T
  • [31] Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signalregulating kinase 1. Mol Cell Biol. Feb 2001;21(3):893-901. doi:10.1128/MCB.21.3.893-901.2001
  • [32] Yu L, Min W, He Y, et al. JAK2 and SHP2 reciprocally regulate tyrosine phosphorylation and stability of proapoptotic protein ASK1. J Biol Chem. May 15 2009;284(20):13481-8. doi:10.1074/jbc.M809740200
  • [33] Shen J, Zhang Y, Yu H, et al. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. Aug 2016;5(8):2061-8. doi:10.1002/cam4.772
  • [34] Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. Sep 2006;58(3):488-520. doi:10.1124/pr.58.3.5
  • [35] Omori K, Kotera J. Overview of PDEs and their regulation. Circulation Research. Feb 16 2007;100(3):309-327. doi:10.1161/01.RES.0000256354.95791.f1
  • [36] Hansen RT, 3rd, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl). Aug 2014;231(15):2941-54. doi:10.1007/s00213-014-3480-y
  • [37] Zhang KYJ, Ibrahim PN, Gillette S, Bollag G. Phosphodiesterase-4 as a potential drug target. Expert Opinion on Therapeutic Targets. Dec 2005;9(6):1283-1305. doi:10.1517/14728222.9.6.1283
  • [38] Kumar N, Goldminz AM, Kim N, Gottlieb AB. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med. Apr 4 2013;11:96. doi:10.1186/1741- 7015-11-96
  • [39] Savai R, Pullamsetti SS, Banat GA, et al. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs. Jan 2010;19(1):117-31. doi:10.1517/13543780903485642
  • [40] Skoumbourdis AP, Leclair CA, Stefan E, et al. Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors. Bioorg Med Chem Lett. Jul 1 2009;19(13):3686-92. doi:10.1016/j. bmcl.2009.01.057
Acta Medica-Cover
  • ISSN: 2147-9488
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: HACETTEPE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Coexistence of Geographic Tongue and Palmoplantar Pustulosis: A Case Report

Yasuhiro HORIUCHI

Effects of the COVID-19 Pandemic on Patients with Schizophrenia Spectrum Disorders

Elçin ÖZÇELİK EROĞLU, M. İrem YILDIZ, A. Elif Anıl YAĞCIOĞLU, Özge TÜRKOĞLU, Oğuz Kaan YALÇINKAYA, Aygün ERTUĞRUL, Sevilay KARAHAN, M. Kâzım YAZICI

Event-free Survival in Patients with Chronic Myeloid Leukemia Receiving Front-line Imatinib Mesylate

Olgu ERKİN ÇINAR, Salih AKSU, Yahya BÜYÜKAŞIK, Nesrin Damla EYÜPOĞLU, Nilgün SAYINALP, Haluk DEMİROĞLU, Hakan GÖKER, Osman İlhami ÖZCEBE, İbrahim C. HAZNEDAROĞLU

Is Human Vomeronasal Organ A Myth or A Neglected Structure?

Ayşegül FIRAT, Özlem ÖNERCİ ÇELEBİ, Hatice Mürvet HAYRAN

A Case of Crimean-Congo Haemorrhagic Fever (CCHF) Mimicking the COVID-19 Disease

Zahit TAŞ, Meliha Çağla SÖNMEZER, Gülçin TELLİ DİZMAN, Ahmet Çağkan İNKAYA, Ömrüm UZUN, Murat AKOVA

Bioinformatic Analysis of Expression Pattern and Prognostic Value of Oxidoreductase ERO1L in Pancreatic Cancer

Begüm KOCATÜRK

Morphometry in Classification of Hippocampal Sclerosis

Güneş GÜNER, Figen SÖYLEMEZOĞLU

The Effect of Statin Use on In-Hospital Mortality in Covid-19 Patients

Abdurrahman AKYÜZ, Burhan ASLAN, Ferhat IŞIK, Murat ÇAP, İlyas KAYA, Özgür ATLI, Ümit İNCİ, Ercan TAŞTAN, Önder BİLGE, Metin OKŞUL, Mehmet Zülküf KARAHAN

Does COVID-19 Affect the Course of Trophoblastic Gestational Disease in Partial Hydatidiform Moles; Is It A Viral or A Pandemic?

Müjde Can İBANOĞLU, Seval YILMAZ ERGANİ, İrem Özge UZUNOĞLU, Belgin SAVRAN UÇUK, Yıldız AKDAŞ REİS, Kadriye YAKUT YÜCEL, Cantekin İSKENDER, Yaprak Engin ÜSTÜN

Comparison of Visual Rating Scale Based on Brain 18F-FDG-PET and Montreal Cognitive Assessment Test in Probable Alzheimer’s Disease

Elifcan ALADAĞ, Elif BULUT, Pınar DEMİRAYAK, Bilge Volkan SALANCI, Kader Karlı OĞUZ, Belkıs ERBAŞ, Eser Lay ERGÜN, Burcu Balam DOĞU, Mustafa CANKURTARAN, Meltem Gülhan HALİL