A Review of Glutamate and Its Receptors: Their Roles in Brain Physiology and Pathology

A Review of Glutamate and Its Receptors: Their Roles in Brain Physiology and Pathology

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system. Through its ionotropic and metabotropic receptors it mediates both fast transmission and long term metabolic changes in a cell. Besides neurotransmission, it takes part in development of central nervous system, cell energy metabolism and synaptic plasticity processes. Glutamatergic signaling is strictly controlled. Under normal conditions, extrasynaptic gluatamate levels are maintained at low concentrations. Excessive transmission leads to excitotoxicity which results in cell damage and death. Glutamatergic dysfunction is involved in many pathologies including neuropsychiatric, neurodegenerative and neurodevelopmental disorders. Impairments in glutamate’s physiological functions, excitotoxicity and disrupted modulation of other neurotranmitter systems contribute to these pathologies. This opinion aims to summarize the cellular mechanism that lead to pathology and review how these mechanisms translate into the clinic.

___

  • [1] Hassel B, Dingledine R. Glutamate and Glutamate Receptors. In: Brady ST, Siegel GJ, Albers RW, Price DL (eds). Basic Neurochemistry. Eighth Edition. Elsevier, 2012; 342- 366.
  • [2] Schousboe A. A Tribute to Mary C. McKenna: Glutamate as Energy Substrate and Neurotransmitter—Functional Interaction Between Neurons and Astrocytes. Neurochem Res 42, 4–9 (2017). https://doi.org/10.1007/s11064-015- 1813-9
  • [3] Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor— metabolic implications in health and disease. Cell Mol Life Sci. 2019;76(8):1473-1488.
  • [4] Watkins, JC, Jane, DE. The glutamate story. Br J Pharmacol. 2006 ; Vol. 147 (Suppl 1): S100 - S108.
  • [5] Miladinovic T, Nashed MG, Singh G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules. 2015;5(4):3112-3141.
  • [6] Luján R, Shigemoto R, López-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3): 567-580.
  • [7] Barker-Haliski M, Steve White H. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015;5(8):1-15.
  • [8] Zhang Z, Zhang S, Fu P, et al. Roles of glutamate receptors in Parkinson’s disease. Int J Mol Sci. 2019; 20(18):4391.
  • [9] Balkhi HM, Gul T, Banday Z, Haq E. “ Glutamate Excitotoxicity: An Insight into the Mechanism “. Int J Adv Res Journalwww.journalijar.com Int J Adv Res. 2014;2(7): 361-373.
  • [10] Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci. 2019;12(February):1-11.
  • [11] Murrough JW, Abdallah CG, Mathew SJ. Targeting glutamate signalling in depression: Progress and prospects. Nat Rev Drug Discov. 2017;16(7):472-486.
  • [12] Campos-Pea V, Antonio M. Alzheimer Disease: The Role of Aβ in the Glutamatergic System. In: Heinbockel T (ed.) Neurochemistry. InTechOpen, 2014.
  • [13] Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: Emerging role in normal function and disease. Front Mol Neurosci. 2018;11(June):1-13.
  • [14] Cooper AJL, Jeitner TM. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. 2016; 6(2):16.
  • [15] Jansson LC, Åkerman KE. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm. 2014;121(8):819-836.
  • [16] Berg DA, Belnoue L, Song H, Simon A. Neurotransmittermediated control of neurogenesis in the adult vertebrate brain. Dev. 2013;140(12):2548-2561.
  • [17] Song M, Yu SP, Mohamad O, et al. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol Dis. 2017;98:9-24.
  • [18] Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat. 2019;13:100. doi:10.3389/fnana.2019.00100
  • [19] Wenzel A, Fritschy JM, Mohler H, Benke D. NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem. Feb 1997;68(2):469-78. doi:10.1046/j.1471-4159.1997.68020469.x
  • [20] Ritter LM, Vazquez DM, Meador-Woodruff JH. Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res Dev Brain Res. Dec 15 2002;139(2):227-36. doi:10.1016/s0165-3806(02)00572-2
  • [21] Gambrill AC, Barria A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci U S A. Apr 5 2011;108(14):5855-60. doi:10.1073/pnas.1012676108
  • [22] Haberny KA, Paule MG, Scallet AC, et al. Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol Sci. Jul 2002;68(1):9- 17. doi:10.1093/toxsci/68.1.9
  • [23] Steward O, Falk PM. Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J Comp Neurol. Dec 15 1991;314(3):545-57. doi:10.1002/ cne.903140311
  • [24] Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol. Jan 1 2014;592(1):13-31. doi:10.1113/jphysiol.2012.235119
  • [25] Waites AB, Stanislavsky A, Abbott DF, Jackson GD. Effect of prior cognitive state on resting state networks measured with functional connectivity. Hum Brain Mapp. Jan 2005;24(1):59-68. doi:10.1002/hbm.20069
  • [26] Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295-322.
  • [27] Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33(1):18-41.
  • [28] Siegelbaum SA, Kandel ER. Prefrontal Cortex, Hippocampus, and the Biology of Explicit Memory Storage. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds). Principles of Neural Science. 5th Ed. The McGraw-Hill Companies, Inc. 2013; 1488-1521.
  • [29] Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long term depression: Molecular mechanisms. Pharmacol Rev. 2009;61(4):395- 412.
  • [30] Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology. 2010;58(7):951-961.
  • [31] Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J Alzheimer’s Dis. 2017;57(4):1041- 1048.
  • [32] Velasco M, Quintero JR, Castillo MC, et al. Excitotoxicity: An Organized Crime at The Cellular Level. J Neurol Neurosci. 2017;8(3):193.
  • [33] Salińska E, Danysz W, Łazarewicz JW. The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 2005;43(4):322-339.
  • [34] Hoffmann J, Charles A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurotherapeutics. Apr 2018;15(2):361-370. doi:10.1007/s13311-018-0616-5
  • [35] Parker PD, Suryavanshi P, Melone M, et al. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron. Feb 17 2021;109(4):611-628 e8. doi:10.1016/j.neuron.2020.11.018
  • [36] Capuani C, Melone M, Tottene A, et al. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med. Aug 2016;8(8):967-86. doi:10.15252/emmm.201505944
  • [37] Tottene A, Conti R, Fabbro A, et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron. Mar 12 2009;61(5):762-73. doi:10.1016/j. neuron.2009.01.027
  • [38] Arnth-Jensen N, Jabaudon D, Scanziani M. Cooperation between independent hippocampal synapses is controlled by glutamate uptake. Nat Neurosci. Apr 2002;5(4):325-31. doi:10.1038/nn825
  • [39] Tsukada S, Iino M, Takayasu Y, Shimamoto K, Ozawa S. Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy] aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology. Mar 2005;48(4):479-91. doi:10.1016/j.neuropharm.2004.11.006
  • [40] Avanzini G, Franceschetti S. Cellular biology of epileptogenesis. Lancet Neurol. Jan 2003;2(1):33-42. doi:10.1016/s1474-4422(03)00265-5
  • [41] Hanada T. Ionotropic glutamate receptors in epilepsy: A review focusing on ampa and nmda receptors. Biomolecules. 2020;10(3):464.
  • [42] Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66(6):1235-1243.
  • [43] Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res. 2017;95(12):2430-2447.
  • [44] Gardoni F, Di Luca M. Targeting glutamatergic synapses in Parkinson’s disease. Curr Opin Pharmacol. Feb 2015;20:24- 8. doi:10.1016/j.coph.2014.10.011
  • [45] Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J Pharmacol Sci. Nov 2020;144(3):151-164. doi:10.1016/j. jphs.2020.07.011
  • [46] Sebastianutto I, Cenci MA. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr Opin Pharmacol. Feb 2018;38:81-89. doi:10.1016/j. coph.2018.03.003
  • [47] Andre VM, Cepeda C, Levine MS. Dopamine and glutamate in Huntington’s disease: A balancing act. CNS Neurosci Ther. Jun 2010;16(3):163-78. doi:10.1111/j.1755- 5949.2010.00134.x
  • [48] Rebec G V. Corticostriatal network dysfunction in Huntington’s disease: Deficits in neural processing, glutamate transport, and ascorbate release. CNS Neurosci Ther. 2018;24(4):281-291.
  • [49] Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115(C):157-188.
  • [50] Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: New hope in neuroprotection Tim Bliss. Mol Brain. 2018;11(1):1-14.
  • [51] Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018;84(August 2017):328-342.
  • [52] Zheng Z, Zhu T, Qu Y, Mu D. Blood glutamate levels in autism spectrum disorder: A systematic review and metaanalysis. PLoS One. 2016;11(7):2-13.
  • [53] Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front Neurosci. 2018;12:304.
  • [54] Kim YS, Choi J, Yoon BE. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells. 2020;9(10):2176.
  • [55] Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180(4):272-286.
  • [56] WHO. Depression. https://www.who.int/news-room/factsheets/ detail/depression (accessed December 2020).
  • [57] Boas GRV, De Lacerda RB, Paes MM, Gubert P, Da Cruz Almeida WL, Rescia VC, De Carvalho PMG, De Carvalho AAV, Oesterreich SA Molecular aspects of depression: a review from neurobiology to treatment. Eur. J. Pharmacol., 2019; 851: 99-121
  • [58] Matveychuk D, Thomas RK, Swainson J, et al. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol. 2020; 10:2045125320916657
  • [59] Shin C, Kim YK. Ketamine in major depressive disorder: Mechanisms and future perspectives. Psychiatry Investig. 2020;17(3):181-192.
  • [60] Li CT, Yang KC, Lin WC. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front Psychiatry. 2019;10(JAN):1-11.
  • [61] Hughes ZA, Neal SJ, Smith DL, et al. Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology. 2013;66: 202-214.
  • [62] Witkin JM, Monn JA, Schoepp DD, et al. The rapidly acting antidepressant ketamine and the mGlu2/3 receptor antagonist LY341495 rapidly engage dopaminergic mood circuits. J Pharmacol Exp Ther. 2016;358(1):71-82.
  • [63] Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxietyrelated disorders. Pharmacol Ther. 2019;204:107402.
  • [64] Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate Systems in DSM-5 Anxiety Disorders: Their Role and a Review of Glutamate and GABA Psychopharmacology. Front Psychiatry. 2020;11:548505.
  • [65] Marinova Z, Chuang D-M, Fineberg N. Glutamate- Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder. Curr Neuropharmacol. 2017;15(7):977-995.
  • [66] Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019. 2019 73(5):204-215.
  • [67] Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci. 2013;7:31. Published 2013 Mar 27. doi:10.3389/fncel.2013.00031
  • [68] Egerton A, Grace AA, Stone J, Bossong MG, Sand M, McGuire P. Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophr Res. 2020;223:59-70.
  • [69] Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018;23(3):187-191.
  • [70] Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J Psychopharmacol. 2015;29(2):97-115.
Acta Medica-Cover
  • ISSN: 2147-9488
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: HACETTEPE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Persistent Extensive Microcalcifications After Neoadjuvant Chemotherapy: Benign or Malignant?

Gamze DURHAN

Biliary Tract Disorders in Patients with Acromegaly: Single-centre Experience

Süleyman Nahit ŞENDUR, Seda Hanife OĞUZ

Repetitive Transcranial Magnetic Stimulation in a Group of Treament-Resistant Obsessive-Compulsive Disorder Patients: A Descriptive Study

Buket CİNEMRE, Müge TOPÇUOĞLU, Ali ERDOĞAN, Naila NABİYEVA

Can Syndecan-1 Be Used As A Biomarker In Alzheimer’s Disease?

Rana Tuna DOĞRUL, Cagatay ÇAVUŞOĞLU, Gozde Sengul AYÇİÇEK, Cemile ÖZSÜREKÇİ, Hatice ÇALIŞKAN, Hacer DOĞAN VARAN, Zeliha GÜNNÜR DİKMEN, Mustafa CANKURTARAN, Burcu Balam DOĞU

Enzymatic Digestion of Fresh-Frozen Human Cornea After Riboflavin/Ultraviolet-A Collagen Crosslinking

Ayşegül FIRAT, Züleyha YALNIZ AKKAYA, Özlem DİKMETAŞ, Hatice Mürvet HAYRAN

Anesthesia Management in An Adult Patient with Desbuquois Syndrome

Murat TÜMER, Hazar KÖKTEN, Aysun ANKAY YILBAŞ, Fatma SARICAOĞLU

Non-Wilms’ Renal Tumors In Childhood

Saniye EKİNCİ, Arbay ÖZDEN ÇİFTÇİ, Feridun Cahit TANYEL, Diclehan ORHAN, Canan AKYÜZ, İbrahim KARNAK, Burak ARDIÇLI

Evaluation of Patients with Diarrhea Applying to the Outpatient Gastroenterology Clinic of Research Hospital

Çağlayan Merve AYAZ, Batuhan BAŞPINAR, Ertuğrul KAYAÇETİN

Evaluation of Prognostic Markers in Cancer-associated Fibroblast Based Sub-groups of Colorectal Cancer

Seçil DEMİRKOL CANLI

A Review of Glutamate and Its Receptors: Their Roles in Brain Physiology and Pathology

Sevgi UĞUR MUTLUAY, Hülya KARATAŞ