İmatinib Mesilat Kaynaklı Kardiyo-Toksisitede Astaksantinin Etkileri

Amaç: Imatinib mesilat bir tirozin kinaz inhibitörüdür ve kronik miyeloid löseminin standart bir birinci basamak tedavisi olarak onaylanmıştır. Kemoterapiye bağlı kardiyotoksisitede oksidatif stresin yanı sıra hücre içi kalsiyum aşırı yüklenmesi ve mitokondriyal disfonksiyon önemli rol oynar. İmatinib ile indüklenen kardiyotoksisitenin neden olduğu altta yatan patofizyolojik mekanizma tam olarak anlaşılamamıştır. Bu çalışmada, geçici reseptör potansiyel melastatin 2 (TRPM2) kanalları üzerinden kalsiyum akışı, oksidatif stres ve apoptozdaki değişimleri araştırdık. Ayrıca, imatinib mesilat kaynaklı kardiyotoksisite sırasında astaksantinin kardiyomiyositlerde modülatör rolü olup olmadığını araştırdık.

Effect of astaxanthin in imatinib mesylate-induced cardiotoxicity

Aim: Imatinib mesylate is a tyrosine kinase inhibitor and is approved as a standard first-line therapy of chronic myeloid leukemia. Oxidative stress, as well as intracellular calcium overload and mitochondrial dysfunction, play an important role in chemotherapy-induced cardiotoxicity. The underlying pathophysiological mechanism associated with imatinib-induced cardiotoxicity is not well understood. In the present study, we investigated alterations in calcium influx, oxidative stress and apoptosis through transient receptor potential melastatin 2 (TRPM2) channels. Also, we aimed to investigate if there is a modulator role of astaxanthin in cardiomyocytes during imatinib mesylate-induced cardiotoxicity. Materials and methods: The cells were divided into seven main control groups: imatinib, imatinib+antranilic acid, imatinib+astaxanthin, imatinib+antranilic acid+astaxanthin, astaxanthin and astaxanthin+antranilic acid groups. Cells in the groups were stimulated with cumene hydroperoxide and inhibited with antranilic acid in related experiments for activation and inactivation of TRPM2 channels, respectively. We measured cytosolic calcium, intracellular reactive oxygene, mitochondrial depolarization, caspase 3 and caspase 9 levels.Results: The apoptosis values were significantly lower in the astaxanthin and the imatinib+astaxanthin group than in the imatinib group of cardiomyocytes (p< 0.001). The cell viability values were significantly higher in the imatinib+astaxanthin+antranilic acid (p<0.001) and the imatinib+astaxanthin (p<0.05) groups, than in the imatinib group.Conclusions: As a result, we found that TRPM2 channels were found in cardiomyocyte cells and they were activated by reactive oxygen species. Also, we showed that overactivated TRPM2 channels are associated with increased cytosolic free calcium, oxidative stress and apoptotic cell injury in imatinib mesylate-induced cardiotoxicity, whereas astaxanthin could have a modulator role in this instance.

___

  • 1. Van Etten RA. Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Leuk Res. 2004;28(suppl 1):21-8. PMID: 15036938
  • 2. Fausel C. Targeted chronic myeloid leukemia therapy: Seeking a cure. Am J Health Syst Pharm. 2007;64:S9-15. PMID: 18056932
  • 3. Kerkela R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12:908-16. PMID: 16862153
  • 4. Turrisi G, Montagnani F, Grotti S, et al. Congestive heart failure during imatinib mesylate treatment. Int J Cardiol. 2010;145:148-50. PMID: 19656583
  • 5. Varga ZV, Ferdinandy P, Liaudet L, et al. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309:H1453-67. PMID: 26386112
  • 6. Fassett RG, Coombes JS. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Marine Drugs. 2011;9:447-65. PMID: 21556169
  • 7. Martinez NA, Ayala AM, Martinez M, et al. Caveolin-1 regulates the P2Y2 receptor signaling in human 1321N1 astrocytoma cells. J Biol Chem. 2016;291:12208-22. PMID: 27129210
  • 8. Espino J, Pariente JA, Rodríguez AB. Role of melatonin on diabetes-related metabolic disorders. World J Diabetes. 2011;2:82-91. PMID: 21860691
  • 9. Özdemir ÜS, Nazıroğlu M, Şenol N, et al. Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol Neurobiol. 2016;53:3540-51. PMID: 26099309
  • 10. Bejarano I, Redondo PC, Espino J, et al. Melatonin induces mitochondrial‐mediated apoptosis in human myeloid HL‐60 cells. J Pineal Res. 2009;46:392-400. PMID: 19552762
  • 11. Uguz AC, Cig B, Espino J, et al. Melatonin potentiates chemotherapy‐induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res. 2012;53:91-8. PMID: 22288984
  • 12. Övey I, Naziroğlu M. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience. 2015;284:225-33. PMID: 25305668
  • 13. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105:2640-53. PMID: 15618470
  • 14. Perik P, Rikhof B, De Jong F, et al. Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity. Ann Oncol. 2007;19:359-61. PMID: 17962203
  • 15. Cohen MH, Williams G, Johnson JR, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res. 2002;8:935-42. PMID: 12006504
  • 16. Thanopoulou E, Judson I. The safety profile of imatinib in CML and GIST: long-term considerations. Arch Toxicol. 2012;86:1-12. PMID: 21717109
  • 17. Maharsy W, Aries A, Mansour O, et al. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail. 2014;16:367-76. PMID: 24504921
  • 18. Wouters KA, Kremer L, Miller TL, et al. Protecting against anthracycline‐induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561-78. PMID: 16351632
  • 19. Flemming NB, Gallo LA, Forbes JM. Mitochondrial Dysfunction and Signaling in Diabetic Kidney Disease: Oxidative Stress and Beyond. Semin Nephrol. 2018;38:101-10. PMID: 29602393
  • 20. Barr LA, Makarewich CA, Berretta RM, et al. Imatinib activates pathological hypertrophy by altering myocyte calcium regulation. Clin Transl Sci. 2014;7:360-7. PMID: 24931551
  • 21. Fliniaux I, Germain E, Farfariello V, et al. TRPs and Ca2+ in cell death and survival. Cell Calcium. 2018;69:4-18. PMID: 28760561
  • 22. Zhan KY, Yu PL, Liu CH, et al. Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin. 2016;37:4-12. PMID: 26725732
  • 23. Sumoza‐Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signaling. J Physiol. 2011;589:1515-25. PMID: 21135052
  • 24. Wang Q, Huang L, Yue J. Oxidative stress activates the TRPM2-Ca2+CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochim Biophys Acta. 2017;1864:957-67. PMID: 28007458
  • 25. Hoffman NE, Miller BA, Wang J, et al. Ca 2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol. 2015;308:H637-50. PMID: 25576627
  • 26. Yang K, Chang W, Yang P, et al. Activation of the transient receptor potential M2 channel and poly (ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13:1815-26. PMID: 16294211
  • 27. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213-23. PMID: 17592090
  • 28. Sagiroglu T, Kanter M, Yagci MA et al. Protective effect of curcumin on cyclosporin A-induced endothelial dysfunction, antioxidant capacity, and oxidative damage. Toxicol Ind Health. 2014;30:316-27. PMID: 22903178
  • 29. Ekeløf S, Jensen SE, Rosenberg J et al. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: a systematic review. Cardiovasc Drugs Ther. 2014;28:173-81. PMID: 24532094
  • 30. Fassett RG, Coombes JS. Astaxanthin in cardiovascular health and disease. Molecules. 2012;17:2030-48. PMID: 22349894
Acta Medica Alanya-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Alanya Alaaddin Keykubat Üniversitesi
Sayıdaki Diğer Makaleler

Hidrojen Peroksit ile Okdisatif Stresin İndüklendiği BEAS-2B Hücrelerinde Myrtus communis L. Esansiyel Yağının Antioksidan Etkilerinin Araştırılması

Hayriye Zehra Ulutaş, Gülay Gülbol Duran

İmatinib Mesilat Kaynaklı Kardiyo-Toksisitede Astaksantinin Etkileri

İshak Suat ÖVEY, Can Ramazan ÖNCEL

Antegrad Serebral Perfüzyon ve Distal Ilımlı Hipotermik Sirkülatuar Arrest Tekniğinin Endotel Fonksiyonuna İlişkin Biyobelirteçler Üzerine Etkisi

Suzan Emel Usanmaz, Ahmet Sarıtaş, Ertekin Utku Ünal, Aytaç Çalışkan, Başak Soran Türkcan, Emine Demirel Yılmaz, Emre Kubat, Ayşen İrez Aksöyek

Mediastinal ve hiler lenfadenopatilerde endobronşiyal ultrason eşliğinde kullanılan power Doppler modunun benign ve malign lenf nodu ayırımına katkısı

Canan Sadullahoğlu, Ruşen Uzun

İmatinib Mesilat Kaynaklı Kardiyotoksisitede Astaksantinin Etkileri

Can Ramazan Öncel, İshak Suat Övey

Ameliyat Sonrası Geliştirilmiş İyileşme (ERAS) ve Anestezi

Filiz Alkaya Solmaz, Pakize Kırdemir

Plantar Fasiit Tedavisinde Trombosit Zengin Plazma ve Ekstrakorporeal Şok Dalga Tedavisinin Etkinliğinin Karşılaştırılması

Ümit YALÇIN

Yoğun bakım hastalarında diyabetes mellitus malnütrisyonla ilişkili midir? Diyabet ve malnütrisyon

Avşar Zerman, Şakir Özgür Keşkek

Akut Pankreatitli Hastalarda Tp-e Aralığı, Tp-e/QT Oranı and Tp-e/QTc Oranı’nın Değerlendirilmesi

Can Ramazan Öncel, Yılmaz Güler

Koksidinialı Hastalarda koksiksin morfometrik değerlendirilmesi ve klasifikasyonu

Büşra Candan, Birol Özkal, Seda Avnioğlu